Filter

Sortierung Titel Year

Publikationen


Conference contributions | 2010

Thermal Conversion of Biomass by Microwave Energy - First Results with Wood

Schrammel G, Paisler C, Krug H, Rauch R, Hofbauer H. Thermal Conversion of Biomass by Microwave Energy - First Results with Wood, 18th European Biomass Conference and Exhibiton 2010, 3rd-7th May 2010, Lyon, France. p 907-910.

Details

By using a microwave generator as energy source wood gets converted into three products: (1) condensate (“product oil”), (2) product gas and (3) charcoal (“material residue”). In this microwave-based specific kind of pyrolysis process wood is used as standard input material in order to have the possibility to compare the three generated products either with products of already established conventional pyrolysis processes [1] or other processes like gasification within thermo-chemical conversion [2]. Therefore, a discontinuous microwave apparatus of technical standard size (magnetron power: 6 kW, magnetron frequency: 2.45 GHz) is used.


Conference contributions | 2014

Thermal simulation of a pellet boiler and a heat storage tank for future control strategies

Schnetzinger R, Musumarra I, Hebenstreit B, Lichtenegger K, Schwarz M, Höftberger E. Thermal simulation of a pellet boiler and a heat storage tank for future control strategies, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.

Details


Peer Reviewed Scientific Journals | 2016

Thermal Stability of Bed Particle Layers on Naturally Occurring Minerals from Dual Fluid Bed Gasification of Woody Biomass

Kuba M, He H, Kirnbauer F, Skoglund N, Boström D, Öhman M, Hofbauer H. Thermal Stability of Bed Particle Layers on Naturally Occurring Minerals from Dual Fluid Bed Gasification of Woody Biomass. Energy & Fuels. 20 October 2016;30(10): 8277-8285.

External Link

Details

The use of biomass as feedstock for gasification is a promising way of producing not only electricity and heat but also fuels for transportation and synthetic chemicals. Dual fluid bed steam gasification has proven to be suitable for this purpose. Olivine is currently the most commonly used bed material in this process due to its good agglomeration performance and its catalytic effectiveness in the reduction of biomass tars. However as olivine contains heavy metals such as nickel and chromium no further usage of the nutrient-rich ash is possible and additional operational costs arise due to necessary disposal of the ash fractions. This paper investigates possible alternative bed materials and their suitability for dual fluid bed gasification systems focusing on the behavior of the naturally occurring minerals olivine, quartz and K-feldspar in terms of agglomeration and fractionation at typical temperatures. To this end samples of bed materials with layer formation on their particles were collected at the industrial biomass combined heat and power (CHP) plant in Senden, Germany, which uses olivine as the bed material and woody biomass as feedstock. The low cost logging residue feedstock contains mineral impurities such as quartz and K-feldspar which become mixed into the fluidized bed during operation. Using experimental analysis and thermochemical it was found that the layers on olivine and K-feldspar showed a significantly lower agglomeration tendency than quartz. Significant fractionation of particles or their layers could be detected for olivine and quartz, whereas K-feldspar layers were characterized by a higher stability. High catalytic activity is predicted for all three minerals once Ca-rich particle layers are fully developed. However quartz may be less active during the build-up of the layers due to lower amounts of Ca in the initial layer formation.
 


Other Presentations | 2014

Thermo-chemical pre-treatment of brewers' spent grains

Gorter S, Rachbauer L, Scheidl S, Gabauer W, Ortner M, Bochmann G. Thermo-chemical pre-treatment of brewers' spent grains, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.

Details


Conference Papers | 2016

Thermochemische Behandlung eines niederkalorischen Reststoffes zur Gewinnung von Sekundärrohstoffen

Meirhofer M, Dißauer C, Strasser C, Kranner R, Wartha C. Thermochemische Behandlung eines niederkalorischen Reststoffes zur Gewinnung von Sekundärrohstoffen. e-nova 2016 (oral presentation). November 2016, Pinkafeld, Austria.

Details


Contributions to trade journals | 2009

Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination

Fraissler G, Jöller M, Mattenberger H, Brunner T, Obernberger I. Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination. Chemical Engineering and Processing: Process Intensification. 2009;48(1):152-64.

External Link

Details


Conference contributions | 2010

Thermogravimetric Analysis and Devolatilisation Kinetics of New Biomass Fuels

Moradi F, Brunner T, Obernberger I. Thermogravimetric Analysis and Devolatilisation Kinetics of New Biomass Fuels, 18th European Biomass Conference and Exhibition 2010, 3rd-7th of May 2010, Lyon, France. (visual presentation)

Details


Conference contributions | 2015

Time-resolved characterization of PM10 emissions from modern small scale biomass combustion units, including PAHs

Kistler M, Schmidl C, Cetintas EC, Padouvas E, Bauer H, Puxbaum H, Kasper-Giebl A. Time-resolved characterization of PM10 emissions from modern small scale biomass combustion units, including PAHs, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (visual presentation)

Details


Conference contributions | 2014

Torrefied pellets – influence of torrefaction on pellet characteristics and combustion behaviour

Pointner C, Schmutzer-Roseneder I, Feldmeier S, Kristöfel C, Ehrig R, Schwabl M, Strasser C, Wörgetter M. Torrefied pellets – influence of torrefaction on pellet characteristics and combustion behavior, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.

Details


Conference contributions | 2014

Towards a Stochastic Cellular Automata Model of Log Wood Combustion

Lichtenegger K, Schappacher W, Hebenstreit B, Schmidl C, Höftberger E. Towards a Stochastic Cellular Automata Model of Log Wood Combustion. Journal of Physics: Conference Series. 2014:490:102015. (peer reviewed)

Details

Describing the combustion of log wood and others solid fuels with complex geometry, considerable water content and often heterogenous struture is a nontrivial task. Stochastic Cellular Automata models offer a promising approach for modelling such processes. Combustion models of this type exhibit several similarities to the well-known forest fire models, but there are also significant differences between those two types of models. These differences call for a detailed analysis and the development of supplementary modeling approaches. In this
article we define a qualitative two-dimensional model of burning log wood, discuss the most important differences to classical forest fire models and present some preliminary results.


Reviewed Conference Papers | 2016

Toxicological characterization of particulate emissions from straw, Miscanthus, and poplar pellet combustion in residential boilers

Kasurinen S, Jalava PI, Uski O, Happo MS, Brunner T, Mäki-Paakkanen J, Jokiniemi J, Obernberger I, Hirvonen MR. Toxicological characterization of particulate emissions from straw, Miscanthus, and poplar pellet combustion in residential boilers. Aerosol Science and Technology. 2 January 2016;50(1): 41-51.

External Link

Details

Wood pellets have been used in domestic heating appliances for three decades. However, because the share of renewable energy for heating will likely rise over the next several years, alternative biomass fuels, such as short-rotation coppice or energy crops, will be utilized. We tested particulate emissions from the combustion of standard softwood pellets and three alternative pellets (poplar, Miscanthus sp., and wheat straw) for their ability to induce inflammatory, cytotoxic, and genotoxic responses in a mouse macrophage cell line. Our results showed clear differences in the chemical composition of the emissions, which was reflected in the toxicological effects. Standard softwood and straw pellet combustion resulted in the lowest PM1 mass emissions. Miscanthus sp. and poplar combustion emissions were approximately three times higher. Emissions from the herbaceous biomass pellets contained higher amounts of chloride and organic carbon than the emissions from standard softwood pellet combustion. Additionally, the emissions of the poplar pellet combustion contained the highest concentration of metals. The emissions from the biomass alternatives caused significantly higher genotoxicity than the emissions from the standard softwood pellets. Moreover, straw pellet emissions caused higher inflammation than the other samples. Regarding cytotoxicity, the differences between the samples were smaller. Relative toxicity was generally highest for the poplar and Miscanthus sp. samples, as their emission factors were much higher. Thus, in addition to possible technical problems, alternative pellet materials may cause higher emissions and toxicity. The long-term use of alternative fuels in residential-scale appliances will require technological developments in both burners and filtration.


Conference contributions | 2014

Transport Biofuels in Europe - A Vision for 2030

Wörgetter M. Transport Biofuels in Europe - A Vision for 2030, Fuels of the Future 2014, 20th-21st of January 2014, Berlin, Germany.

Details


Conference contributions | 2010

Trends and opportunities of micro-CHP technologies based on biomass combustion

Obernberger I. Trends and opportunities of micro-CHP technologies based on biomass combustion, 18th European Biomass Conference and Exhibition 2010, 3rd-7th of May 2010, Lyon, France. p 1-9.

Details


Conference contributions | 2011

Trennung heterogener Abfälle durch sensorgestützte Sortierung zur Optimierung materialspezifischer Abfallbehandlung

Pieber S, Ragossnig A, Sommer M, Meirhofer M, Curtis A, Pomberger R. Trennung heterogener Abfälle durch sensorgestützte Sortierung zur Optimierung materialspezifischer Abfallbehandlung, Waste-to-Resources 2011, 24th-27th of May 2011, Hannover, Germany.

Details


Other Presentations | 2013

Two-Stage Anaerobic Digestion of Sugar Beet Pressed Pulp - Optimizing of reactor performance

Stoyanova E et al. Two-Stage Anaerobic Digestion of Sugar Beet Pressed Pulp - Optimizing of reactor performance, 13th World Congress on Anaerobic Digestion 2013, 25th-28th of June 2013, Santiago de Compostela, Spain. (peer reviewed) (visual presentation)

Details


Peer Reviewed Scientific Journals | 2016

Two-stage cultivation of N-rich and N–deprived Acutodesmus obliquus biomass: Influence of cultivation and dewatering methods on microalgal biomass used in anaerobic digestion

Gruber M, Nussbaumer M, Jerney J, Ludwig I, Zohar E, Lang I, Bochmann G, Schagerl M, Obbard JP, Fuchs W, Drosg B. Two-stage cultivation of N-rich and N–deprived Acutodesmus obliquus biomass: Influence of cultivation and dewatering methods on microalgal biomass used in anaerobic digestion. Algal Research. July 2016;17: 105-112.

External Link

Details


Conference contributions | 2009

Unearthing waste`s potential for 100% renewable energy systems

Ragossnig A. Unearthing waste`s potential for 100% renewable energy systems. 5th SDEWES-conference 2009, 29th of September-3rd of October, Dubrovnik, Croatia.

Details

This paper focusses on the elaboration of the potential of the waste sector to contribute to the provision of 100% renewable energy systems. Waste is an abundant and locally available ressource and in many cases it is (at least partially) of biogenic origin, therefore pursuing political goals in waste management by energetic utilization of waste contributes towards achieving political goals in the energy as well as climate policy, too. However, it is shown based on the example of Austria that looking at energy systems on a national or international scale the waste sector is only able to contribute very little to the provision of the overall energy needed. It is different if one looks at specific energy systems in industrial sectors or on individual industrial sites. Here one must aknowledge that the energetic utilization of waste can have a high impact towards establishing renewable energy systems. Exemplarily this is shown by discussing the Austrian pulp & paper as well as the cement industry sector.


Other Presentations | 2009

Untersuchung der Fördercharakteristik von Schneckenförderern für eine Pelletabwurffeuerung

Ohnmacht, R. Untersuchung der Fördercharakteristik von Schneckenförderern für eine Pelletabwurffeuerung, Master Thesis, Technologische Universität Wien, Vienna, Austria, 2009.

Details


Other Presentations | 2008

Untersuchung der Staubemissionen einer Prototyp Strohpelletsfeuerung, sowie Ermittlung des Potentials einer Emissionsreduktion durch einen Brennwertwärmetauscher mit Wäscher

Schwabl, M. Untersuchung der Staubemissionen einer Prototyp Strohpelletsfeuerung, sowie Ermittlung des Potentials einer Emissionsreduktion durch einen Brennwertwärmetauscher mit Wäscher, Master Thesis, Technische Universität Wien, Vienna, Austria, 2008.

Details

The primary energy consumption world-wide is rising constantly. Therefore it is necessary to open up renewable resources for energy production. Besides wood, the application of agricultural resources and residuals for energy production is possible, also within the range of small scale combustion units. These fuels still pose a challenge, concerning gaseous and particulate emissions. This work examines the application of straw pellets in a small scale combustion unit. Gaseous and particulate emissions, as well as the separation eciency of a secondary heat exchanger with scrubber were investigated. Compared with wood-like fuels a strong slagging of the combustion chamber could be determined. Gaseous emissions as NOx, SO2 and HCl, as well as the emission of particles were clearly higher than with combustions of wood. The gaseous emissions were below the considered limit value for other biogenous fuels after Art. 15 a B-VG 2007 [1]. The burnout of the gaseous phase, which can be evaluated by the emission of CO, was always good and comparable with the combustion of wood.
Using a secondary heat exchanger with scrubber (Hydrocube R of the company Schräder ) particulate emissions could be reduced by 20%. Element analysis of the particulate emissions as well as particle size measurements showed that primarily large particles were separated. A retrot of the Hydrocube R by an ionizing electrode increased the degree of separation on 60%. Besides the separation of particles, the Hydrocube R also reduced gaseous emissions like SO2 and HCl. The absorption of these components in the condensate phase caused a decrease of the pH value. Low ph value increased the corrosion of the Hydrocube R , what could be detected by rising concentrations on Fe, Ni and Cr in the condensate.


Other Presentations | 2013

Untersuchung verschiedener Zugverhältnisse auf die Praxisrelevanz der Prüfung von Scheitholzöfen nach EN 13240

Stressler, H. Untersuchung verschiedener Zugverhältnisse auf die Praxisrelevanz der Prüfung von Scheitholzöfen nach EN 13240, Bachelor Thesis, FH Oberösterreich, Wels, Österreich, 2013.

Details


Other Presentations | 2013

Untersuchung von Wirbelschichtbettmateralien mittels einer Kinetikapparatur

Yildiz, B. Determination of effects of different bed materials on steam reforming for tar reduction, Master Thesis, Vienna University of Technology, Vienna, Austria, 2013.

Details


Conference Papers | 2017

Upscaling and Operation of a Biomass Derived Fischer-Tropsch Pilot Plant Producing 1 Barrel Per Day

Loipersböck J, Weber G, Rauch R, Gruber H, Groß P, Hofbauer H. Upscaling and Operation of a Biomass Derived Fischer-Tropsch Pilot Plant Producing 1 Barrel Per Day. 25th European Biomass Conference & Exhibition (oral presentation). June 2017, Stockholm, Sweden.

Details


Peer Reviewed Scientific Journals | 2015

Use of Hazelnut's Pruning to Produce Biochar by Gasifier Small Scale Plant

Colantoni A, Longo L, Evic N, Gallucci F, Delfanti L. Use of Hazelnut‟s Pruning to Produce Biochar by Gasifier Small Scale Plant. International Journal of Renewable Energy Research. 2015;5(3):873-878.

External Link

Details

Biochar is the product of biomass pyrolysis and gasification. One of the possible application of this product is certainly in agronomic sector, as soil amendment. However biochar use in Italy is subordinated to insert this product in fertilizer list, which biochar could be commercialized with. The aim of this paper is to know the biochar from gasification process (using an Imbert downdraft prototype), in particular investigating its potentiality as soil amendment in terms of European and Italian regulations and in terms of physical and chemical characterizations.


Conference Papers | 2015

Validation of a Kinetic Model for the Catalyzed Water Gas Shift Reaction Applying a Fe/Cr Catalyst Processing Wood Gas from Biomass Steam Gasification

Kraussler M, Fail S, Plaza Quevedo A, Cortes Guerro JA, Rauch R, Hofbauer H. Validation of a Kinetic Model for the Catalyzed Water Gas Shift Reaction Applying a Fe/Cr Catalyst Processing Wood Gas from Biomass Steam Gasification. 23rd European Biomass Conference & Exhibition (Poster). June 2015, Vienna, Austria.

Details


Contributions to trade journals | 2011

Validation of flow simulation and gas combustion sub-models for CFD-based prediction of NOx formation in biomass grate furnaces

Zahirović S, Scharler R, Kilpinen P, Obernberger I. Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combustion Theory and Modelling. 2011;15(1):61-87.

External Link

Details


Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@bioenergy2020.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter_innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite