Filter

Sortierung Titel Year

Publikationen


Contributions at other events | 2014

Analysis of Environmental and Economic Aspects of International Pellet Supply Chains

Ehrig, R. Analysis of Environmental and Economic Aspects of International Pellet Supply Chains, Ph.D. Thesis, Vienna University of Technology, Vienna, Austria, 2014.

Details

Biomass plays a key role to achieve the EU's 20-20-20 energy and climate targets. Because of rising European demand and limited domestic resources, the EU relies on worldwide imports. Given this framework, the present thesis explores the inuences on wood pellet supply chains considering dierent environmental policies, price risks and the eect of torrefaction pretreatment. The examinations refer to three real case studies for pellet trade from Australia, Canada, and Russia to Europe. In the rst investigation, the eciency of co-ring imported wood pellets in terms of CO2 savings and related subsidy schemes is analysed. Scenarios show that co-ring biomass is ecient to contribute to the EU energy targets. Though, policy makers could use these instruments more eective when directing sourcing decision towards options with even less environmental impacts. The second analysis explores the inuence of statistically derived price risks on total supply chain economics. It is shown that price risks can eect strong uctuations in the short term, which seriously aect the protability of individual trade routes. Securing the supply chain is mainly based on individual producer-buyer agreements, personal branch experiences and fast reactions on the subsidy system. Systematic evaluation of supply chains could contribute to a more reliable market and thus foster investment decisions. In the last investigation, the economic and environmental performance of potential torrefaction-based supply chains is assessed. As a result, torrefaction-based supply
chains turn out to be a certain alternative to conventional ones. Though, still huge research eorts and industrial demonstration are required to make torreed biomass a real alternative on the market.

 


Peer Reviewed Scientific Journals | 2016

Analysis of optimization potential in commercial biomass gasification plants using process simulation

Wilk V, Hofbauer H. Analysis of optimization potential in commercial biomass gasification plants using process simulation. Fuel Processing Technology. 01 December 2016;141: 138-147.

Details


Contributions to trade journals | 2014

Analysis of woody biomass commodity price volatility in Austria

Kristöfel C, Strasser C, Morawetz UB, Schmidt J, Schmid E. Analysis of woody biomass commodity price volatility in Austria. Biomass Bioenergy. 2014;65:112-124.

External Link

Details

Several energy and agricultural commodities have experienced higher price volatility in recent years. Management of price risks usually leads to additional costs that are often shared and transmitted along the supply chain to the final consumers. Only little information is currently available on how price volatility of woody biomass commodities has developed compared to energy and agricultural commodities in recent years. We compute the historic price volatility of woody biomass commodities using the standard deviation of log returns as well as univariate GARCH models. The results show that the price volatility of several woody biomass commodities has increased in recent years. However, the price volatility of woody biomass is still lower compared to the price volatility of agricultural commodities and fossil fuels. The analysis of factors and linkages provides insights of the current biomass market developments.


Other Publications | 2012

Analytical approach for the determination of micro elements in anaerobic digestion systems by sequential extraction technique

Rachbauer, L. Analytical approach for the determination of micro elements in anaerobic digestion systems by sequential extraction technique, Master Thesis, University of Natural Resources and Life Sciences Vienna, Vienna, Austria, 2012.

Details

Der Einfluss von Nährstoffzusammensetzung und Additivzugabe beim anaeroben Abbau organischer Substanz stieß in den letzten Jahren vermehrt auf Interesse. Im Besonderen Spurenelemente haben erwiesenermaßen erheblichen Einfluss auf u.a. methanogene Archaeen und deren metabolische Aktivität. Massive Probleme der Prozessstabilität speziell bei Monovergärung unterschiedlichster Substrate können durch Co-Fermentation oder gezielte Zudosierung von Spurenelementmischungen überwunden werden. Ein profundes Verständnis der Wirkung dieser Elemente auf die verschiedenen mikrobiellen Spezies im Biogasreaktor als auch ihre Verfügbarkeit, ist die Voraussetzung für eine wirtschaftliche Gestaltung des anaeroben Fermentationsprozesses organischer Roh- als auch Reststoffe. Der heutige Stand-der-Technik zur Analyse von Biogasproben hat seinen Ursprung in der Wasser-, Abwasser- und Schlammanalytik und besteht aus einem einzelnen Filtrationsschritt vor Elementdetektion mittels ICP-OES bzw. ICP-MS. Diese Methodik erlaubt nur einen äußerst begrenzten Einblick in die Verteilung von essentiellen Spurenelementen in Anaerobreaktoren. Eine aussagekräftige Beurteilung der mikrobiellen Verfügbarkeit von beispielsweise Cobalt, Nickel oder Molybdän ist somit nur eingeschränkt möglich. Ziel dieser Arbeit war es, eine bestehende Methode zur sequentiellen Extraktion aus dem Bereich der Boden- und Sedimentanalytik für die Anwendung auf Biogasproben zu adaptieren. Der daraus resultierende Einblick in die Verteilung von Spurenelementen in den einzelnen Fraktionen erlaubt eine genauere Bewertung der mikrobiellen Verfügbarkeit von Nährstoffen in Biogasreaktoren, verglichen mit bestehenden analytischen Untersuchungsmethoden. Anforderungen an das Verfahren wie die Reproduzierbarkeit der Daten, zeitsparende Analytik und wirtschaftliche Realisierbarkeit konnten erfüllt werden. Wiederfindungsraten zwischen 90 und 110 % wurden für die wichtigsten Spurenelemente erreicht. Durch die sequentielle Extraktion konnte gezeigt werden, dass essenzielle Mikro-Nährstoffe bis zu 98 % in einer unlöslichen Form vorliegen können. Die Ergebnisse dieser Arbeit belegen die Anwendbarkeit der entwickelten Methodik zur Spurenelement-Extraktion in Anaerob-Systemen.


Conference contributions | 2010

Annual efficiency determination of pellets boilers: Method, applications and new possibilities for the differentiation of the quality of pellets boilers

Haslinger W, Heckmann M, Schmidl C, Schwarz M. Annual efficiency determination of pellets boilers: Method, applications and new possibilities for the differentiation of the quality of pellets boilers, 10. Industrieforum Pellets, 7th-8th of September 2010, Stuttgart, Germany.

Details


Conference contributions | 2012

Annual efficiency of small scale biomass combustion systems

Haslinger W, Schmidl C, Schwarz M, Verma VK, Hebenstreit B, Carlon E, Golicza L, Hartmann H, Brandt J, Weissinger A, Berger H, Wörgetter M. Annual efficiency of small scale biomass combustion systems, IEA Bioenergy Conference 2012, 13th-15th of November 2012, Vienna, Austria.

Details


Peer Reviewed Scientific Journals | 2016

Apparent kinetics of the catalyzed water-gas shift reaction in synthetic wood gas

Plaza A, Fail S, Cortés JA, Föttinger K, Diaz N, Rauch R, Hofbauer H. Apparent kinetics of the catalyzed water-gas shift reaction in synthetic wood gas. Chemical Engineering Journal. 1 October 2016;301: 222-228.

External Link

Details


Scientific Journals | 2017

Apparent kinetics of the water-gas-shift reaction in biomass gasification using ash-layered olivine as catalyst.

Krycaa J, Priščák J, Łojewskac J, Kuba M, Hofbauer H. Apparent kinetics of the water-gas-shift reaction in biomass gasification using ash-layered olivine as catalyst. Chemical Engineering Journal. 2018, 346: 113-119.

External Link

Details

Substitution of fossil fuels for production of electricity, heat, fuels for transportation and chemicals can be realized using biomass steam gasification in a dual fluidized bed (DFB).

Interaction between biomass ash and bed material in a fluidized bed leads to transformation of the bed particle due to enrichment of components from the biomass ash resulting in the development of ash layers on the bed particle surface. These ash-rich particle layers enhance the catalytic activity of the bed material regarding the water-gas-shift reaction and the reduction of tars.

The water-gas-shift reaction at conditions typical for dual fluidized bed biomass gasification at a temperature of 870 °C was investigated. Diffusion and heat transfer limitations were minimized using a lab-scale experimental set-up consisting of a gas mixing section and a quartz glass reactor in which the catalyst is investigated.

 

 

 


Conference contributions | 2013

Applicability and slag formation survey of different biomass fuel qualities in small scale combustion – a Substudy in the EU FP7-SME project AshMelT

Schwabl M, Feldmeier S, Nagelhofer K, Wopienka E, Haslinger W. Applicability and slag formation survey of different biomass fuel qualities in small scale combustion – a Substudy in the EU FP7-SME project AshMelT, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark. p 1156-1159.

Details


Conference contributions | 2014

Applicability survey of different torrefied biomass fuels in small scale appliances

Feldmeier S, Schwabl M, Wopienka E, Strasser C, Haslinger W. Applicability survey of different torrefied biomass fuels in small scale appliances, 22nd European Biomass Conference 2014, 23rd-26th of June 2014, Hamburg, Germany. p 662-666.

Details

The torrefaction process is a promising key technology for biomass treatment. An improvement of the fuel properties, e.g. a higher gross calorific value and a resulting increased energy density, is expected. The changed fuel properties in terms of water repellence enable an improved storability. However, the modified fuel characteristics change the combustion behaviour of the fuel. Since small­scale pellet boilers mainly are dedicated to wood pellets, the applicability of torrefied fuel yet remains unclear. Within the EU FP7 project SECTOR, amongst others, the end­use application of torrefied biomass was investigated in several small scale appliances and the behaviour during the stationary operational conditions of the combustion process was assessed. The experimental design was divided in two parts: First, a survey of the combustion appliances was conducted in order to observe the influence of the changed fuel properties on the different boiler systems. Afterwards, the combustion behaviour of torrefied pellets made of different raw material quality was monitored by utilizing the test fuels and monitor the emission release. The results of these experimental series provide an initial indication for the feasibility of the utilization of several torrefied fuels in state­of­the­art pellet boilers.


Conference contributions | 2008

Application Fields of Sensor-based Sorting in Waste Management - Limits and Research Demand

Faist V, Ragossnig A. Application Fields of Sensor-based Sorting in Waste Management - Limits and Research Demand, ISWA Annual Congress 2008, 3rd-6th of November, Singapur.

Details


Conference contributions | 2014

Application of a Model Based Control Strategy at a Fixed Bed Biomass District Heating Plant

Zemann C, Heinreichsberger O, Gölles M, Brunner T, Dourdoumas N, Obernberger I. Application of a Model Based Control Strategy at a Fixed Bed Biomass District Heating Plant. 22nd European Biomass Conference and Exhibition Proceedings. 2014;1698-1705.

Details


Peer Reviewed Scientific Journals | 2015

Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers.

Gruber T, Scharler R, Obernberger I. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers. Biomass and Bioenergy. Volume 79, August 2015, Pages 145-154.

External Link

Details

To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s−1 to 8 m·s−1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential.


Contributions to trade journals | 2013

Application of novel and advanced fuel characterization tools for the combustion related characterization of different wood/Kaolin and straw/Kaolin mixtures

Sommersacher P, Brunner T, Obernberger I, Kienzl N, Kanzian W. Application of novel and advanced fuel characterization tools for the combustion related characterization of different wood/kaolin and straw/kaolin mixtures. Energy and Fuels. 2013;27(9):5192-206.

External Link

Details

The increased demand for energy from biomass enforces the utilization of new biomass fuels (e.g., energy crops, short-rotation coppices, as well as wastes and residues from agriculture and the food industry). Compared to conventional wood fuels, these new biomass fuels usually show considerably higher ash contents and lower ash sintering temperatures, which leads to increased problems concerning slagging, ash deposit formation, and particulate matter emissions. One possibility to combat these problematic behaviors is the application of fuel additives such as kaolin. In contrast to the usual approach for the application of additives based on an experimental determination of an appropriate additive ratio, this study applies novel and advanced fuel characterization tools for the characterization of biomass/kaolin mixtures. In the first step the pure biomass fuels (softwood from spruce and straw) and the additive were chemically analyzed. On the basis of the analysis theoretical mixing calculations of promising kaolin ratios were conducted. These theoretical mixtures were evaluated with fuel indexes and thermodynamic equilibrium calculations (TEC). Fuel indexes provide the first information regarding high temperature corrosion (2S/Cl) and ash melting tendency (Si + P + K)/(Ca + Mg + Al). TEC can be used for a qualitative prediction of the release of volatile and semivolatile elements (K, Na, S, Cl, Zn, Pb) and the ash melting behavior. Moreover, selected mixtures of spruce and straw with kaolin were prepared for an evaluation and validation of the release behavior of volatile and semivolatile ash forming elements with lab-scale reactor experiments. The validation of the ash melting behavior was conducted by applying the standard ash melting test. It could be shown that the new approach to apply novel and advanced fuel characterization tools to determine the optimum kaolin ratio for a certain biomass fuel works well and thus opens a new and targeted method for additive evaluation and application. In addition, it helps to significantly reduce time-consuming and expensive testing campaigns. © 2013 American Chemical Society.


Conference contributions | 2015

Application of numerical modelling to biomass grate furnaces

Mehrabian R, Shiehnejadhesar A., Scharler R. Application of numerical modelling to biomass grate furnaces. Internation conference on advances in mechanical engineering, Istanbul 2015.

External Link

Details

The direct combustion of the biomass is the most advanced and mature technology in the field of energetic biomass utilisation. The legislations on the amount of emitted pollutants and the plant efficiency of biomass combustion systems are continually being restricted. Therefore constant improvement of the plant efficiency and emission reduction is required Numerical modelling is gaining increasing importance for the development of biomass combustion technologies. In this paper an overview about the numerical modelling efforts deal with the most relevant phenomena in biomass grate firing systems is given. The numerical modelling results in a deeper understanding of the underlying processes in biomass combustion plants. Therefore, it leads to a faster and safer procedure of development of a new technology.


Conference contributions | 2012

Arbeitsgruppe zum internationalen Erfahrungsaustausch der Probenahme und Analytik in Prozeßgasen

Kleinhappl M. Arbeitsgruppe zum internationalen Erfahrungsaustausch der Probenahme und Analytik in Prozeßgasen 2012, 22nd-23rd of October 2012, Hamburg, Germany.

Details


Conference Papers | 2017

Ash and bed material research in dual fluidized bed gasification of biomass in lab- and industrial-scale

Kuba M, Hofbauer H. Ash and bed material research in dual fluidized bed gasification of biomass in lab- and industrial-scale. 25th European Biomass Conference & Exhibition (oral presentation). June 2017, Stockholm, Sweden.

Details


Conference contributions | 2014

Ash melting behaviour of solid biofuels in residential pellet boilers

Schwabl M, Feldmeier S, Wopienka E, Haslinger W, Dahl J, Jensen TB, Hartmann H, Schön C, Boman C, Boström D. Pellets Workshop “Ash melting behaviour of solid biofuels in residential pellet boilers” (held held during the Central European Biomass Conference 2014), 15th-18th of January, Graz, Austria, 2014.

Details


Conference contributions | 2012

AshMelT - Development of a Practical and Reliable Ash Melting Test for Biomass Fuels, in particular for Wood Pellets

Haslinger W, et al. AshMelT - Development of a Practical and Reliable Ash Melting Test for Biomass Fuels, in particular for Wood Pellets, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy.

Details


Conference contributions | 2013

AshMelT – Development of a Practical and Reliable Ash Melting Test for Biomass Fuels, in particular for Wood Pellets

Feldmeier S, Schwabl M, Höftberger E, Wopienka E. AshMelT – Development of a Practical and Reliable Ash Melting Test for Biomass Fuels, in particular for Wood Pellets, European Pellets Conference 2013, 27th-28th of February 2013, Wels, Austria.

Details


Conference contributions | 2015

AshMelT Project Background – Why this work was necessary

Schwabl M, Wopienka E. AshMelT Workshop “AshMelT Project Background – Why this work was necessary” (held during de World Sustainable Energy Days 2015), 25th-27th of February, Wels, Austria, 2015.

Details


Other Presentations | 2015

Aspects of microalgal biomass as feedstock in biogas plants

Gruber M, Zohar E, Jerney J, Ludwig I, Bochmann G, Nussbaumer L, Montgomery L, Fuchs W, Drosg B, Schöpp T, Obbard JP. Aspects of microalgal biomass as feedstock in biogas plants, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (visual presentation)

Details


Conference contributions | 2009

Assessing and Labelling the Eco-Efficiency of Small Scale Biomass Combustion Systems - BIOHEATLABEL

Haslinger W, Griesmayr S, Strasser C, Lingitz A, Jungmeier G. Assessing and Labelling the Eco-Efficiency of Small Scale Biomass Combustion Systems – BIOHEATLABEL, 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany. p 2335-2340.

Details

The project BioHeatLABEL aims at the derivation of eco-design criteria for small scale biomass
combustion systems. It is a mirror project to the on-going European preparatory study for solid fuel small combustion installations. The presented paper gives an overview of the on-going work. It presents the applied methodologies so far. Sales and performance data as well as prices are collected for the existing stock as well as for new products. Six Base Cases are defined to best possibly represent market relevant product categories. These Base Cases are (1) log wood boilers with natural draught, (2) log wood boilers with forced draught, (3) wood chips boilers, (4) wood pellets boilers, (5) log wood stoves, and (6) wood pellets stoves. For these product categories the bills of production materials as well as for packaging are collected and information about the end-of-life behaviour is retrieved. Based on the above, preliminary life cycle assessment calculations are performed using the tool EuP EcoReport. The usability of this tool for a sound, reliable and representative life cycle assessment is discussed. Finally, an outlook on the further work is given.


Peer Reviewed Scientific Journals | 2017

Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction.

Benedikt F, Kuba M, Schmid JC, Müller S, Hofbauer H. Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction. Applied Energy 2019;238:1138-1149.

External Link

Details

Thermochemical conversion of biomass feedstock via dual fluidized bed steam gasification is a well-proven technology used to produce a medium calorific product gas for various applications in the energy or transportation sector or for chemical syntheses. At unfavorable gasification conditions, undesirable high amounts of tar, which are aromatic hydrocarbons, are present in the product gas. High tar contents are a major problem, and they lead to uneconomic operation due to sharply diminished quality of product gas or unexpected plant shut downs due to fouling of the product gas coolers. Currently, tar content is measured with a discontinuous wet-chemical analysis method, which needs several hours of sample preparation to receive the final tar content. The aim of this study is to establish valid correlations between online measured permanent gas components in the product gas and its tar content. The results show that hydrogen, methane, and ethene concentrations are strongly related to the tar content in the product gas, while the carbon monoxide and carbon dioxide content did not show a clear correlation. Using these correlations with online measured gas components provides the possibility of a direct and prompt response of a plant operator in case of unfavorable gasification conditions. Additionally, an optimization of the plant operation can be conducted and thereby, the operation hours and, consequently, the economic efficiency are improved.


Contributions to trade journals | 2013

Assessment of online corrosion measurements in combination with fuel analysis, aerosol and deposit measurements in a biomass CHP plant

Retschitzegger S, Brunner T, Waldmann B, Obernberger I. Assessment of online corrosion measurements in combination with fuel analysis, aerosol and deposit measurements in a biomass CHP plant. Energy and Fuels. 2013;27(10):5670-5683.

Details

To systematically investigate high-temperature corrosion of superheaters in biomass combined heat and power
(CHP) plants, a long-term test run (5 months) with online corrosion probes was performed in an Austrian CHP plant (28 MWNCV; steam parameters: 32 t/h at 480 °C and 63 bar) firing chemically untreated wood chips. Two corrosion probes were applied in parallel in the radiative section of the boiler at average flue gas temperatures of 880 and 780 °C using the steel 13CrMo4-5 for the measurements. Corrosion rates were determined for surface temperatures between 400 and 560 °C. The results show generally moderate corrosion rates and a clear dependence upon the flue gas temperatures and the surface temperatures of the corrosion probes, but no influence of the flue gas velocity has been observed. The data are to be used to create corrosion diagrams to determine maximum steam temperatures for superheaters in future plants, which are justifiable regarding the corrosion rate. Dedicated measurements were performed at the plant during the long-term corrosion probe test run to gain insight into the chemical environment of the corrosion probes. From fuel analyses, the molar 2S/Cl ratio was calculated with an average of 6.0, which indicates a low risk for high-temperature corrosion. Chemical analyses of aerosols sampled at the positions of the corrosion probes showed that no chlorine is present in condensed form at the positions investigated. Deposit probe measurements performed at the same positions and analyses of the deposits also showed only small amounts of chlorine in the deposits, mainly found at the leeward position of the probes. Subsequent to the test run, the corrosion probes have been investigated by means of scanning electron microscopy/energy-dispersive X-ray spectroscopy analyses. The results confirmed the deposit probe measurements and showed only minor Cl concentrations in the deposits and no Cl at the corrosion front. Because, in the case of Cl-catalyzed active oxidation, a layer of Cl is known to be found at the corrosion front, this mechanism is assumed to be not of relevance in the case at hand. Instead, elevated S concentrations were detected at the corrosion front, but the corrosion mechanism has not yet been clarified.


Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@best-research.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter_innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite