Filter

Sortierung Titel Year

Publikationen


Conference contributions | 2010

Valorisation of low grade Biomass to substitute fossil Fuels in a thermal Power Plant

Kern S, Halwachs M, Hofbauer H, Kampichler G. Valorisation of low grade Biomass to substitute fossil Fuels in a thermal Power Plant, WasteEng 2010, 17th-19th of May 2010, Peking, China.

Details

Minimizing carbon dioxide emissions whereas keeping up the high living standard of today is only possible by increasing the efficiency of energy consumption and the change to a mix of renewable fuels. Huge amounts of unused biomass in terms of agricultural residues like straw, that is a cheap and local feedstock, are often available. But as a reason of the high amount of corrosive ash elements (K, Cl, S), the residues are not suitable for co-firing in a thermal power plant. Therefore the feedstock is converted by low temperature pyrolysis into pyrolysis gases and charcoal. The aim of this work is to obtain fundamentals for an advanced pyrolysis model approach by the results of the pilot plant for co-firing the pyrolysis gases in a thermal power plant. A 3 MW pyrolysis pilot plant is being operated since 2008. For the process, an externally heated rotary kiln reactor with a design fuel power of 3 MW is used. Several mass and energy balances have been calculated based on measured plant data for different operating points of the pilot plant. The high amount of pyrolysis oil in the gas has positive effects to the heating value of the pyrolysis gases. As a reason of that, cold gas efficiencies of more than 70 % are possible. Based on these results, a scale up to a next scale pyrolysis reactor with a capacity of 30 MWth fuel input is currently investigated.


Conference contributions | 2010

Wooden Biofuels in Europe – Quantities and Corrosion Relevant Characteristics.

Schmidl C, Humel S, Haslinger W, Friedl G. Wooden Biofuels in Europe – Quantities and Corrosion Relevant Characteristics, 18th European Biomass Conference 2010, 3rd-7th of May 2010, Lyon, France. p 308-315.

Details


Peer Reviewed Scientific Journals | 2011

A carbon-cycle-based stochastic cellular automata climate model

Lichtenegger K, Schappacher W. A carbon-cycle-based stochastic cellular automata climate model. International Journal of Modern Physics C. 2011;22(6):607-621.

External Link

Details

In this paper a stochastic cellular automata model is examined, which has been developed to study a "small" world, where local changes may noticeably alter global characteristics. This is applied to a climate model, where global temperature is determined by an interplay between atmospheric carbon dioxide and carbon stored by plant life. The latter can be released by forest fires, giving rise to significant changes of global conditions within short time.


Conference contributions | 2011

Advanced biomass fuel characterisation by the application of dedicated fuel indexes

Brunner T, Moradi F, Obenberger I. Advanced biomass fuel characterisation by the application of dedicated fuel indexes, Central European Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details


Conference contributions | 2011

Agricultural Biomass for Small-scale Combustion Units

Wopienka E. Agricultural Biomass for Small-scale Combustion Units, Central Europe Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details


Conference contributions | 2011

Biomass combustion technologies – state-of-the-art and relevant future developments (keynote lecture)

Obernberger I. Biomass combustion technologies - state-of-the-art and relevant future developments (keynote lecture), Central European Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria. (oral presentation)

Details


Conference contributions | 2011

CFD simulation of biomass grate furnaces with a comprehensive 3D packed bed model

Mehrabian R, Stangl S, Scharler R, Obernberger I, Weissinger A. CFD simulation of biomass grate furnaces with a comprehensive 3D packed bed model, 25th German flame day 2011, 14th-15th of September 2011, Karlsruhe, Germany.

Details


Conference contributions | 2011

CFD simulations as efficient tool for the development and optimisation of small-scale biomass furnaces and stoves

Scharler R, Benesch C, Obernberger I. CFD simulations as efficient tool for the development and optimisation of small-scale biomass furnaces and stoves, 19th European Biomass Conference and Exhibiton 2011, 6th-10th of June 2011, Berlin, Germany. p 4-12.

Details


Conference contributions | 2011

CFD-Simulationen als innovatives Werkzeug für die Entwicklung und Optimierung von Biomasse-Kleinfeuerungsanlagen und Kaminöfen

Scharler R, Benesch C, Obernberger I. CFD-Simulationen als innovatives Werkzeug für die Entwicklung und Optimierung von Biomasse-Kleinfeuerungsanlagen und Kaminöfen, Central Europe Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details


Conference contributions | 2011

Determination of annual efficiency and emission factors of small-scale biomass boiler

Schwarz M, Heckmann M, Lasselsberger L, Haslinger W. Determination of annual efficiency and emission factors of small-scale biomass boiler, Central Europe Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details

In the last decades certification tests of small-scale biomass systems have impressively shown the improvement of the state of the art. Though, steady state measurements represent results only foroptimal operation. In practice results differ due to varying operating conditions. Therefore, of a test stand measurement method to derive realistic annual system efficiencies and emission factors is developed. The method includes a heat loss model for thermal storages too. It can be used to test automatically fed biomass boiler, manually loaded biomass boilers and boiler / heat accumulator combinations. For the evaluation of the measurement data a calculation method based on mass flows was developed. The results of our experiments show that the newly developed method is a good tool to evaluate small-scale biomass boilers. With this method an easy and reliable instrument to determine annual system efficiencies and emission factors for realistic boiler operation is provided. The application of the method will prove that modern small-scale biomass combustion systems have the potential to significantly contribute to the reduction of air pollutants and to increase overall energy system efficiency.


Conference contributions | 2011

Development of biomass fired boilers with an advanced CFD model for ash deposit and aerosol formation

Schulze K, Scharler R, Obernberger I. Development of biomass fired boilers with an advanced CFD model for ash deposit and aerosol formation, 9th European Conference on Industrial Furnaces and Boilers 2011, 26th-29th of April 2011, Estoril, Portugal.

Details


Conference contributions | 2011

Highlights der Bioenergieforschung

Fercher E. Highlights der Bioenergieforschung, Central Europe Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details


Conference contributions | 2011

Influence of combustion conditions on the genotoxic potential of fine particle emissions from small-scale wood combustion

Brunner T, Kelz J, Obernberger I, Javala P, Hirvonen M. Influence of combustion conditions on the genotoxic potential of fine particle emissions from small-scale wood combustion, Central European Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details


Conference contributions | 2011

LCA of small scale biomass combustion systems for the development of a product label (Ökobilanz von Biomasse-Kleinfeuerungsanlagen für die Entwicklung eines Produktlabels)

Jungmeier G, Lingitz A, Canella L, Haslinger W, Strasser C, Moser W. LCA of small scale biomass combustion systems for the development of a product label (Ökobilanz von Biomasse-Kleinfeuerungsanlagen für die Entwicklung eines Produktlabels), Central Europe Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.

Details


Conference contributions | 2011

Sensorbasierte Sortierung zur Erzeugung einer Deponiefraktion aus einer MBA-Schwerfraktion - Praxiserfahrungen und Vergleich verschiedener Aufbereitungsalternativen

Meirhofer M, Ragossnig A, Pieber S, Sommer M. Sensorbasierte Sortierung zur Erzeugung einer Deponiefraktion aus einer MBA-Schwerfraktion - Praxiserfahrungen und Vergleich verschiedener Aufbereitungsalternativen, Waste-to-Resources 2011, 24th-27th of May 2011, Hannover, Germany.

Details

The processing of heterogeneous waste is a major challenge for waste treatment equipment used in mechanical-biological (MB) waste treatment plants. This conference contribution focuses on the technical feasibility and efficiency of different technologies for the processing of a heavy waste fraction from a MB-plant which contains a high portion of high caloric components. The aim is to meet the requirements for waste to be landfilled in Austria. Also economic considerations with regard to the implementation of an additional separation step and the resulting changes in the waste routing are discussed. The processing technologies looked at comprise sensor-based sorting technologies (NIR, X-ray transmission) as well as traditional mechanical density separation technologies such as a jigger and cross-flow air classification.


Conference contributions | 2011

Trennung heterogener Abfälle durch sensorgestützte Sortierung zur Optimierung materialspezifischer Abfallbehandlung

Pieber S, Ragossnig A, Sommer M, Meirhofer M, Curtis A, Pomberger R. Trennung heterogener Abfälle durch sensorgestützte Sortierung zur Optimierung materialspezifischer Abfallbehandlung, Waste-to-Resources 2011, 24th-27th of May 2011, Hannover, Germany.

Details


Contributions to trade journals | 2011

Validation of flow simulation and gas combustion sub-models for CFD-based prediction of NOx formation in biomass grate furnaces

Zahirović S, Scharler R, Kilpinen P, Obernberger I. Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combustion Theory and Modelling. 2011;15(1):61-87.

External Link

Details


Conference contributions | 2012

2nd Generation Biofuels from Biomass by steam gasification

Rauch R. 2nd Generation Biofuels from Biomass by steam gasification, 1. Nürnberger Fach-Kolloquium Methanisierung und Second Generation Fuels 2012, 29th-30th of May 2012, Nürnberg, Germany.

Details


Reviewed Conference Papers | 2012

A CFD model for thermal conversion of thermally thick biomass particles

Mehrabian R, Zahirovic S, Scharler R, Obernberger I, Kleditzsch S, Wirtz S, et al. A CFD model for thermal conversion of thermally thick biomass particles. Fuel Process Technol. 2012;95:96-108.

External Link

Details

A one-dimensional model for the thermal conversion of thermally thick biomass particles is developed for the simulation of the fuel bed of biomass grate furnaces. The model can be applied for cylindrical and spherical particles. The particle is divided into four layers corresponding to the main stages of biomass thermal conversion. The energy and mass conservation equations are solved for each layer. The reactions are assigned to the boundaries. The model can predict the intra-particle temperature gradient, the particle mass loss rate as well as the time-dependent variations of particle size and density, as the most essential features of particle thermal conversion. When simulating the fuel bed of a biomass grate furnace, the particle model has to be numerically efficient. By reducing the number of variables and considering the lowest possible number of grid points inside the particle, a reasonable calculation time of less than 1 min for each particle is achieved. Comparisons between the results predicted by the model and by the measurements have been performed for different particle sizes, shapes and moisture contents during the pyrolysis and combustion in a single-particle reactor. The results of the model are in good agreement with experimental data which implies that the simplifications do not impair the model accuracy.


Other Presentations | 2012

Abbilden des instationären Betriebs eines Pelletkessel durch Messung und Simulation

Schnetzinger, R. Abbilden des instationären Betriebs eines Pelletkessel durch Messung und Simulation, Diploma Thesis, FH Oberösterreich, Wels, Austria, 2012.

Details

This thesis focuses on portraying the thermal behavior of a biomass pellet boiler through measurement and simulation. During operation the power of a pellet boiler changes depending on the heat demand. Detailed measurements were conducted to record this changing behavior of some boilers and estimate their levels of efficiencies. Subsequently a mathematical model was created to emulate boilers and their thermal performance without such measurements. The first part of this thesis deals with the description of the simulation model and the measurements which were carried out. Secondly, the verification of the model is discussed. For this verification simulation results of three different boilers are compared to measurement data and pictured in various diagrams. The last part of this thesis is about further simulations of these three boilers where the control units were emulated too. The model was built in the MATLAB/Simulink® environment and is generally based on
thermodynamic relationships and heat balances in a boiler. However, through constant comparison of the simulation results with the measurement data some parameters were adapted to fit the simulation to reality. Therefore this model is “semi-empirical” as physical correlations are included but some parameters were deduced from measurement. Following, the verification of the model is discussed through the comparison of measurement data and simulation results. For the verifications the boiler power, fuel mass flow as well as
the heat consumption were taken from the measurement data and set as input for the simulation. The calculated results show that the boiler model enables to portray the thermal behavior of the three boilers tested with only small divergences. At the end of this thesis it was attempted to model the control unit of the three boilers by analyzing the measurement data. Having a model for the control unit, the inputs from the measurement data are reduced to just two variables, the water inlet temperature and the water volume flow (heat consumption). The comparison of the calculated values to the measurement data shows slightly higher divergences than during the validation, especially where the simulated control unit does not behave like the real one. Through the simulation of further boilers the model could be continuously enhanced. In the future this “virtual boiler” should be used to test control algorithms of boiler control units to enhance their efficiencies.


Contributions to trade journals | 2012

Acute systemic and lung inflammation in C57Bl/6J mice after intratracheal aspiration of particulate matter from small-scale biomass combustion appliances based on old and modern technologies

Uski OJ, Happo MS, Jalava PI, Brunner T, Kelz J, Obernberger I, Jokiniemi J, Hirvonen M-R. Acute systemic and lung inflammation in C57Bl/6J mice after intratracheal aspiration of particulate matter from small-scale biomass combustion appliances based on old and modern technologies. Inhalation Toxicology. 2012;24(14):952-965.

Details


Conference contributions | 2012

Advanced biomass fuel characterisation based on tests with a specially designed lab-scale reactor

Brunner T, Biedermann F, Kanzian W, Evic N, Obernberger I. Advanced biomass fuel characterisation based on tests with a specially designed lab-scale reactor, Conference Impacts of Fuel Quality on Power Production and Environment 2012, 23th-27th of September 2012, Puchberg, Austria.

Details

To examine relevant combustion characteristics of biomass fuels in grate combustion systems, a specially designed lab-scale reactor was developed. On the basis of tests performed with this reactor, information regarding the biomass decomposition behavior, the release of NOx precursor species, the release of ash-forming elements, and first indications concerning ash melting can be evaluated. Within the scope of several projects, the lab-scale reactor system as well as the subsequent evaluation routines have been optimized and tests with a considerable number of different biomass fuels have been performed. These tests comprised a wide variation of different fuels, including conventional wood fuels (beech, spruce, and softwood pellets), bark, wood from short rotation coppice (SRC) (poplar and willow), waste wood, torrefied softwood, agricultural biomass (straw, Miscanthus, maize cobs, and grass pellets), and peat and sewage sludge. The results from the lab-scale reactor tests show that the thermal decomposition behavior and the combustion behavior of different biomass fuels vary considerably. With regard to NOx precursors (NH3, HCN, NO, N2O, and NO2), NH3 and, for chemically untreated wood fuels, also HCN represent the dominant nitrogen species. The conversion rate from N in the fuel to N in NOx precursors varies between 20 and 95% depending upon the fuel and generally decreases with an increasing N content of the fuel. These results gained from the lab-scale reactor tests can be used to derive NOx precursor release models for subsequent computational fluid dynamics (CFD) NOx post-processing. The release of ash-forming vapors also considerably depends upon the fuel used. In general, more than 91% of Cl, more than 71% of S, 1–51% of K, and 1–50% of Na are released to the gas phase. From these data, the potential for aerosol emissions can be estimated, which varies between 18 mg/Nm3 (softwood pellets) and 320 mg/Nm3 (straw) (dry flue gas at 13% O2). Moreover, these results also provide first indications regarding the deposit formation risks associated with a certain biomass fuel. In addition, a good correlation between visually determined ash sintering tendencies and the sintering temperatures of the different fuels (according to ÖNORM CEN/TS 15370-1) could be observed.


Conference contributions | 2012

Advanced Motor Fuels

Bacovsky D. Advanced Motor Fuels, Eco-Mobility Conference 2012, 11th-12th of December 2012, Vienna, Austria.

Details


Other Presentations | 2012

Analyse ausgewählter europäischer Biomassemärkte

Hollinger, K. Analyse ausgewählter europäischer Biomassemärkte, Diploma Thesis, FH-Burgenland, Pinkafeld, Austria, 2012.

Details


Other Publications | 2012

Analytical approach for the determination of micro elements in anaerobic digestion systems by sequential extraction technique

Rachbauer, L. Analytical approach for the determination of micro elements in anaerobic digestion systems by sequential extraction technique, Master Thesis, University of Natural Resources and Life Sciences Vienna, Vienna, Austria, 2012.

Details

Der Einfluss von Nährstoffzusammensetzung und Additivzugabe beim anaeroben Abbau organischer Substanz stieß in den letzten Jahren vermehrt auf Interesse. Im Besonderen Spurenelemente haben erwiesenermaßen erheblichen Einfluss auf u.a. methanogene Archaeen und deren metabolische Aktivität. Massive Probleme der Prozessstabilität speziell bei Monovergärung unterschiedlichster Substrate können durch Co-Fermentation oder gezielte Zudosierung von Spurenelementmischungen überwunden werden. Ein profundes Verständnis der Wirkung dieser Elemente auf die verschiedenen mikrobiellen Spezies im Biogasreaktor als auch ihre Verfügbarkeit, ist die Voraussetzung für eine wirtschaftliche Gestaltung des anaeroben Fermentationsprozesses organischer Roh- als auch Reststoffe. Der heutige Stand-der-Technik zur Analyse von Biogasproben hat seinen Ursprung in der Wasser-, Abwasser- und Schlammanalytik und besteht aus einem einzelnen Filtrationsschritt vor Elementdetektion mittels ICP-OES bzw. ICP-MS. Diese Methodik erlaubt nur einen äußerst begrenzten Einblick in die Verteilung von essentiellen Spurenelementen in Anaerobreaktoren. Eine aussagekräftige Beurteilung der mikrobiellen Verfügbarkeit von beispielsweise Cobalt, Nickel oder Molybdän ist somit nur eingeschränkt möglich. Ziel dieser Arbeit war es, eine bestehende Methode zur sequentiellen Extraktion aus dem Bereich der Boden- und Sedimentanalytik für die Anwendung auf Biogasproben zu adaptieren. Der daraus resultierende Einblick in die Verteilung von Spurenelementen in den einzelnen Fraktionen erlaubt eine genauere Bewertung der mikrobiellen Verfügbarkeit von Nährstoffen in Biogasreaktoren, verglichen mit bestehenden analytischen Untersuchungsmethoden. Anforderungen an das Verfahren wie die Reproduzierbarkeit der Daten, zeitsparende Analytik und wirtschaftliche Realisierbarkeit konnten erfüllt werden. Wiederfindungsraten zwischen 90 und 110 % wurden für die wichtigsten Spurenelemente erreicht. Durch die sequentielle Extraktion konnte gezeigt werden, dass essenzielle Mikro-Nährstoffe bis zu 98 % in einer unlöslichen Form vorliegen können. Die Ergebnisse dieser Arbeit belegen die Anwendbarkeit der entwickelten Methodik zur Spurenelement-Extraktion in Anaerob-Systemen.


Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@bioenergy2020.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter_innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite