Experimental and modeling study of hydrogen production from catalytic steam reforming of methane mixture with hydrogen sulfide

Parham Sadooghi a, *, Reinhard Rauch b

a Vienna University of Technology, Vienna, Austria
b Bioenergy 2020+ GmbH, Güssing, Austria

Article history:
Received 20 March 2015
Received in revised form 19 June 2015
Accepted 28 June 2015
Available online 21 July 2015

Keywords:
Methane
Sulfur
Catalysis
Reforming
Heat
Reactor

Abstract
Experimental and theoretical studies of steam methane reforming reactions with different amount of hydrogen sulfide in the feed gas are presented. A two dimensional pseudo-heterogeneous model is developed to simulate methane steam reforming reactions in a packed bed tubular reactor. This model is based on mole and energy balance equations for the catalyst and the fluid phases. Attention is given to the analysis of sulfur negative effects on reforming process. A parametric study is done and effects of different steam to carbon ratios, space velocities, temperatures and different amount of sulfur on methane conversion and temperature distribution within the reactor are investigated. The results are verified comparing to the experimental results. It is shown that even presented in the gas at very low concentration levels (ppm), sulfur drastically decreases the conversion of methane. The obtained results play a key role in design and optimization of an actual reactor.

Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction
In the latest years, the environmental problems derived from useful energy generation sources and from the increment of fossil fuels prices, have enhanced the development of new technologies for energy production. Steam reforming of methane produced by biomass gasification is one of the most employed processes to produce hydrogen and synthesis gas [1–4]. Synthesis gas, constituted by different quantities of carbon monoxide and hydrogen, can also be used to produce high purity hydrogen streams and chemical products, [5]. The steam reforming reactions are industrially operated at a high temperature up to 900 °C over nickel-alumina or noble metal based catalysts, because a reasonable conversion of methane is required in this endothermic process, [6–8]. Sulfur, on the other hand, which also is incorporated in the biomass structure, is released into the product gas during gasification as hydrogen sulfide. It is generally recognized that sulfur can have devastating effects on the catalytic activity of supported metal particles. Many catalytic reactions are poisoned by even trace quantities of sulfur containing molecules such as hydrogen sulfide. Since, synthesis gas produced by steam reforming of low hydrocarbons are further used in the
synthesis to mixed alcohols or Fischer–Tropsch products, it is of interest to investigate steam reforming process without cleaning the gas and desulfurization prior to the reactor.

Even though, different methods have been used to address and simulate the steady state and non-steady state operation of catalytic steam reformers, and several comprehensive reviews have been written about reforming of methane [9–21], there is no mechanism available which covers steam reforming of methane including sulfur and published papers are very few in numbers, [22–30]. This work considers a two dimensional pseudo-heterogeneous model to mathematically simulate steam reforming of methane in a fixed bed reactor including reasonable amount of hydrogen sulfide. Using the same inlet and process condition for experiments, makes it possible to compare the modeling and experimental results and see how well the modeling predict the experimental results. Moreover, a parametric study is done to investigate the effects of different reforming parameters such as sulfur, space velocity, steam to carbon ratio and temperature on process efficiency.

Mathematical model

Steam reforming of methane involves, two reversible endothermic reforming reactions, (1, 3) coupled with exothermic water gas shift reaction, (2) [31]:

\[\text{CH}_4 +
\text{H}_2\text{O} \rightarrow \text{CO} + 3 \text{H}_2 \quad \Delta H^{298} = +206 \text{kJ/mol} \]
\[\text{CO} +
\text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \quad \Delta H^{298} = -41 \text{kJ/mol} \]
\[\text{CH}_4 +
2\text{H}_2\text{O} \rightarrow \text{CO}_2 + 4 \text{H}_2 \quad \Delta H^{298} = +165 \text{kJ/mol} \]

The kinetic model for methane steam reforming reactions on a nickel catalyst is based on a Langmuir–Hinshelwood reaction mechanism and the intrinsic kinetic expressions reported by Xu and Froment are adopted [10,11]:

\[R_1 = \frac{k_1}{\text{DEN}} \left[P_{\text{CH}_4} P_{\text{H}_2\text{O}} - \frac{P_{\text{H}_2} P_{\text{CO}}}{K_1} \right] \]
\[R_2 = \frac{k_2}{\text{DEN}} \left[P_{\text{CO}} P_{\text{H}_2\text{O}} - \frac{P_{\text{H}_2} P_{\text{CH}_4}}{K_2} \right] \]
\[R_3 = \frac{k_3}{\text{DEN}} \left[P_{\text{CH}_4} P_{\text{H}_2\text{O}} - \frac{P_{\text{H}_2} P_{\text{CO}}}{K_3} \right] \]

\[\text{DEN} = 1 + K_{\text{H}_2\text{O}} P_{\text{CH}_4} + K_{\text{CO}} P_{\text{CO}} + K_{\text{H}_2} P_{\text{H}_2} + K_{\text{H}_2\text{O}} P_{\text{H}_2\text{O}} \]

Rate constants of the above equations are described by Arrhenius type functions [31]:

\[k_1 = 9.49 \times 10^{16} \exp \left(\frac{-28.879}{T} \right) \text{kmol kpa}^{0.5} \text{kg h} \]
\[k_2 = 4.39 \times 10^{4} \exp \left(\frac{-8074.3}{T} \right) \text{kmol kpa} \text{kg h} \]
\[k_3 = 2.29 \times 10^{16} \exp \left(\frac{-29.336}{T} \right) \text{kmol kpa}^{0.5} \text{kg h} \]

\[K_{\text{H}_2\text{O}}, K_{\text{H}_2}, K_{\text{CO}}, K_{\text{H}_2\text{O}} \] are the constants which related to surface adsorption in equilibrium and are functions of temperature. The equilibrium constants for reactions (1–3) were calculated using the standard Gibbs energy of each reaction at the corresponding temperature and are defined as [31]:

\[K_1 = 10266.76 \times \exp \left(\frac{-26.830}{T} + 30.11 \right) \text{kg h} \]
\[K_2 = \exp \left(\frac{4400}{T} - 4.063 \right) \]
\[K_3 = K_1 K_2 \text{kg h} \]

Partial pressures of gases were correlated to their own concentrations by using the ideal gas law. The formation rate of each component was then calculated by using equations (1)–(5). For example, for methane and carbon dioxide components the reaction rates are written as follow:

\[R_{\text{CH}_4} = -(R_1 + R_3) \]
\[R_{\text{CO}_2} = (R_2 + R_3) \]

Pseudo-heterogeneous model considers transport by plug flow and distinguishes between conditions in the fluid and in the solid (catalyst) phases. The continuity and energy balance equations for the fluid phase are written as [31]:

\[\frac{\partial c_i}{\partial t} + \frac{\partial (c_i r D_i \frac{\partial c_i}{\partial r})}{\partial r} = \frac{k_{i_a}(C_i^{*} - C_i)}{r_i E_i} \]

\[\frac{\partial T}{\partial t} = \frac{1}{r_i E_i c_{p,i}} \left(\lambda_i \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial r^2} \right) - h_i a_i (T - T_s) \]

Where, \(a_i \) is the specific surface area of the catalyst bulk per reactor volume. The energy transport in axial direction is dominated by the transport from axial convection, and thus axial conduction is neglected. With no radial convection, the only energy transport mechanism in radial direction is the effective conduction.

When resistance to heat and mass transfer inside catalyst pellets is important, the rate of reaction is not uniform throughout the particle. The catalyst phase mass and energy balance equations are written as [31]:

\[k_{i_a}(C_i^{*} - C_i) = \rho_i (1 - e) \eta_i R_i \]
\[h_i a_i (T_s - T_f) = \frac{1}{r_i E_i} \frac{\partial}{\partial r} \left(r_k e_i \frac{\partial T}{\partial r} \right) + \rho_i (1 - e) \sum (\eta_i - \Delta H_i) R_i \]

Momentum equation which shows the pressure distribution in the packed-bed reactor was described by the Tallmadge, who proposed an extension of Ergun’s equation under higher Reynolds numbers [32,33]:

\[\frac{dp}{dz} = \frac{f \rho u_z^2}{dp} \]
\[f = \frac{\mu^2 (\mu - 1)}{\mu Re_p + 1} \]
The following general boundary and initial conditions are applied to the reformer [31]:

at $z = 0$

\[0 \leq r \leq R \rightarrow C_i = C_0 \quad T_f = T_s = T_w \quad (10a) \]

at $r = 0$

\[\frac{\partial C_i}{\partial r} = \frac{\partial C_s}{\partial r} = 0 \quad (10b) \]

at $r = 0$

\[\frac{\partial T_f}{\partial r} = \frac{\partial T_s}{\partial r} = 0 \quad (10c) \]

at $r = R$

\[\frac{\partial C_i}{\partial r} = \frac{\partial C_s}{\partial r} = 0 \quad (10d) \]

Where C_i, T^i indicate the conditions at the surface of the catalyst. The effectiveness factor in the above reactions, which expresses the ratio of the observed rate to that calculated for surface conditions, are calculated as follows [32]:

\[\eta_i = \frac{\int_V r_i (p_i) \, dV}{\int_V r_i (p_i^i) \, dV} \quad i = 1, 2, 3 \quad (11) \]

The set of equations are solved simultaneously with pressure drop equation by state of the art COMSOL Multiphysics software 4.3, to account for species concentration and temperature distribution within the reactor. Wall heat transfer coefficient and thermal conductivity are calculated using the correlation reported by Dixon, [34,35].

Sulfur effects

Prior to steam reforming, sulfurous compounds must be removed from the feed stream because of their poisonous effects on the catalysts used. Under gasification and reforming conditions, all sulfur compounds in biomass will be converted to hydrogen sulfide, which is chemisorbed on the nickel surface and decreases the catalyst activity. Sulfur poisoning occurs because sulfur adsorbs strongly on the active metal surface area of the catalyst, forming surface sulfides. Sulfur is a selective poison and a
partial surface coverage is sufficient for the catalyst to become essentially non-active which leads to the point that hydrocarbon conversion stops or is no longer at acceptable levels. This mechanism is shown in Fig. 1. Using a simple Maxted model for poisoning and Temkin isotherm, we recently compared the intrinsic rate expressions of poisoned catalyst to sulfur free catalyst, and modeled sulfur coverage, θ_s [27]:

$$R_i = R_{i0} (1 - \theta_s)^3$$

$$\theta_s = 1.45 - 9.53 \cdot 10^{-5} \cdot T + 4.17 \cdot 10^{-5} \cdot T \ln \left(\frac{P_{HI}}{P_{HI0}} \right)$$

Rate expressions for sulfur free catalyst (R_{i0}), were discussed in previous sections.

Experimental procedure

The catalyst used in these experiments is a nickel based catalysts supported on alumina, (NiAl$_2$O$_3$). It is a cylinder shape catalyst with center hole. It has a constant outside diameter of 3.5 mm and inside diameter of 1.5 mm. The gases used in this study were chemically completely pure. The gas flow rate system consists of mass flow controllers which provide inlet gas in various blends of different gases, hydrogen, methane, carbon monoxide, carbon dioxide and Nitrogen as carrier gas. A bypass was inserted around the reactor allowing sampling of feed gas. Water is evaporated through heating tubes and a high performance liquid pump is used to control the liquid water flow rate. The liquid water was vaporized and mixed with the feed gas stream before entering the reactor. The reactor is made from a glass tube with 16 mm inside diameter. For the laboratory experiments typically 11 gr of catalyst was loaded into the reactor and the height of the catalyst bed is about 10 cm. The bulk density of the catalyst is 500 (kg/m³). Due to endothermic nature of the process, heat should be supplied into the reactor; therefore, outer surface temperature of the reformer is kept at 1123 (K) by means of electrical heating. Thermocouples are placed within the reactor and are connected to a temperature indicator, computer monitoring system and temperature controllers. The gas leaving the reactor was cooled in a condenser where liquid water is removed. Finally, the dry gas stream were routed into the online analyzer where their concentrations are analyzed, measured and presented in Lab view program which controls the online analyzer. A schematic diagram of experimental setup is shown in Fig. 2. Inlet gas conditions at different steam to carbon ratios, space velocities, sulfur concentrations and temperatures (depending on each experiment) were conducted in the reactor. The gases from the outlet of mass flow controllers are directed to come exactly above the packed bed and nitrogen is used as carrier gas. Different amount of water is fed into the reactor in order to adjust the desired steam to carbon ratio. Catalyst properties and operating conditions for the steam reformer are shown in Table 1.

Table 1 – Catalyst parameters and operating conditions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside diameter of the catalyst</td>
<td>3.5 (mm)</td>
</tr>
<tr>
<td>Inside diameter of the catalyst</td>
<td>1.5 (mm)</td>
</tr>
<tr>
<td>Height of the catalyst particle</td>
<td>4 (mm)</td>
</tr>
<tr>
<td>Inlet pressure</td>
<td>1.163 (bar)</td>
</tr>
<tr>
<td>Inlet methane dry molar fraction</td>
<td>11 (%)</td>
</tr>
<tr>
<td>Inlet hydrogen dry molar fraction</td>
<td>39 (%)</td>
</tr>
<tr>
<td>Inlet carbon dioxide dry molar fraction</td>
<td>26 (%)</td>
</tr>
<tr>
<td>Inlet carbon monoxide dry molar fraction</td>
<td>22 (%)</td>
</tr>
<tr>
<td>Inlet nitrogen dry molar fraction</td>
<td>2 (%)</td>
</tr>
<tr>
<td>Catalyst bulk density</td>
<td>500 (kg/m³)</td>
</tr>
<tr>
<td>Inside diameter of the reactor</td>
<td>16 (mm)</td>
</tr>
<tr>
<td>Height of the catalyst in the reactor</td>
<td>100 (mm)</td>
</tr>
</tbody>
</table>

![Fig. 3 – (a, b) Methane conversion and temperature distribution in the reactor, (a) methane conversion (b) axial temperature distribution.](image-url)
Result and discussions

Modeling and experimental results presented in this work, provide the temperature distribution and methane conversion profiles along the reactor. Effects of different operating parameters such as steam to carbon ratio, different amount of sulfur, temperature distribution and space velocity on process efficiency are discussed in following sections.

Steam to carbon ratio effects

The effect of different steam to carbon ratios on methane conversion with and without sulfur included in the gas, are shown in Fig. 3(a). The reactor wall temperature is set at 1123 (K), the space velocity is 10,000 1/h. As it is shown by increasing steam to carbon ratio from 1.5 to 2.5, methane conversion increases significantly, but there is not a big difference in methane conversion when steam to carbon ratio increases from 2.5 to 3. Sulfur has huge negative effect on conversion process by deactivating the catalyst and methane conversion decreases drastically. The effect of different steam to carbon ratios on temperature distribution along the reactor is shown in Fig. 3(b). When sulfur is not included in the gas, the temperature decreases as soon as the gas enters the reactor and then increases. This is due to the high endothermic nature of the reforming reactions which decreases the temperature. Later, heat transfer from the outer surface of the reactor, increases the temperature again. Increasing the steam to carbon ratio increases the outlet temperature due to the exothermic nature of the water gas shift reaction. When sulfur is included in the gas, deactivates the catalyst and decreases the reaction rate of reforming reactions. Therefore, the temperature decreases uniformly up to the outlet of the reactor. In both cases, with and without sulfur, increasing steam to carbon ratio makes temperature distribution more uniform along the reactor length. Experimental results are compared to modeling results in Fig. 3(b) and Fig. 4 for temperature distribution and methane conversion respectively. Although experimental and modeling results are in very good agreement in both cases, with and without sulfur included in the gas, when sulfur is included in the gas, due to deactivation effects of sulfur on highly endothermic reforming reactions, modeling predicts the experimental results exactly.

Sulfur effects

The effect of different amount of sulfur on methane conversion and temperature distribution is investigated in Fig. 5(a,b) and Fig. 6. The reactor wall temperature is set at 1123 (K) and kept constant, the space velocity is 10,000 1/h and steam to carbon ratio is set at 3, (S/C = 3). As it is shown in Fig. 5(a), even at very low concentration levels of hydrogen

Exp. vs. Mod., sv=10000 1/hr, T=1123 (K)

Fig. 4 Comparison of modeling and experimental results of methane conversion.

Fig. 5 (a, b) Methane conversion and temperature distribution in the reactor, (a) methane conversion (b) axial temperature distribution.
sulfide (25 ppm), catalytic activity is highly reduced and methane conversion is about 90 percent less than the case where there is no sulfur included in the gas. When hydrogen sulfide level increases to 150 ppm, it is shown that the catalyst is almost deactivated and increasing the concentration level does not decrease the methane conversion significantly.

Temperature distribution along the reactor is shown in Fig. 5(b). Hydrogen sulfide deactivates the catalyst and reforming reactions. As a result, temperature does not decrease significantly in the reactor. Heat transfer from the outer surface of the reactor increases the outlet temperature compare to the case when sulfur is not included in the gas. Increasing the hydrogen sulfide level of concentration, makes temperature distribution more uniform along the reactor. Experimental and modeling results of methane conversion are shown in Fig. 6. As it is mentioned in previous section, experimental and modeling results are in very good agreement at higher level of sulfur included in the gas.

Temperature effects

Fig. 7(a,b) and 8 show the effect of different temperatures on methane conversion and temperature distribution in the reactor. Space velocity is 10,000 1/h, steam to carbon ratio is set to 3 and sulfur amount is constant and is set to 160 ppm and the temperature varies from 1000 to 1150 (K). As it is shown in Fig. 7(a,b), increasing reactor wall temperature, heavily affects conversion of methane and temperature distribution in the reactor. Even when sulfur is included in the gas, increasing temperature, increases methane conversion significantly. Higher wall temperature also affects temperature distribution within the reactor by increasing the reaction rate of reforming reactions. Therefore, as it is shown in Fig. 7(b), when sulfur is not included in the gas, temperature decreases more significantly as soon as the gas enters the reactor. This is because of endothermic nature of the reforming reactions. Later, wall temperature supplies more heat into the reactor and increases the temperature along the reactor gradually. As it is shown, higher wall temperature increases the temperature at the outlet of the reactor. Comparison of experimental and modeling result of methane conversion at different temperatures are shown in Fig. 8. It shows very good agreement between simulation and experiment results.

Space velocity effects

Space velocity is an important parameter for design and optimization of steam reformers and has a high impact on methane conversion and temperature distribution within the reactor. In Fig. 9(a,b) and Fig. 10, it is shown that how changing space velocity affects the reformer performance. Steam to carbon ratio is set at 3, (S/C = 3) and sulfur amount is constant and is set to 160 ppm and outer reactor wall surface temperature is kept at 1123 (K). Fig. 9(a) shows the
effect of different space velocities on methane conversion with and without presence of sulfur in the gas. It is evident that decreasing space velocity increases methane conversion. The reason is that at lower space velocities the contact time between gas and catalyst pellets increases and as a result methane conversion increases. When sulfur is included in the gas, the same effect is seen but methane conversion and therefore, hydrogen yield are decreased due to negative effect of sulfur on reforming reactions.

Temperature distribution along the reactor length is shown in Fig. 9(b). As it is seen, increasing space velocity does not affect temperature drop as soon as the gas enters the reactor. The reason is that reforming reactions take place very quickly and are not affected by changing space velocity at very short distance from the inlet. Decreasing space velocity increases heat transfer from the reactor wall to the gas and therefore increases the outlet temperature. Addition of sulfur to the gas makes temperature distribution more uniform within the reactor due to its deactivating effects on reforming reactions. Experimental and modeling results of methane conversion are compared in Fig. 10. It shows that how well modeling predicts experimental results and when sulfur is included in the gas, the results are very exact.

Conclusion

Two-dimensional heterogeneous model is developed to investigate hydrogen sulfide deactivation effects on methane steam reforming process in a packed bed reactor. Producer gas from biomass gasification has small amounts of hydrogen sulfide which deactivates the catalyst under reforming conditions. The novelty of the work is that the effect of different amount of hydrogen sulfide on methane conversion and temperature distribution within the reactor under different processing conditions such as space velocity, temperature, and steam to carbon ratio are investigated. A wide range of experiments have been done and the simulation and experimental results are compared. It is shown that even when present in the gas in very small amount of concentration level (ppm) sulfur decreases the reforming efficiency drastically and has a huge effect on temperature distribution within the reactor. The obtained results from simulation are compared with experimental results. Although experimental and modeling results are in very good agreement in both cases, with and without sulfur included in the gas, when sulfur is included in the gas, due to deactivation effects of sulfur on highly endothermic reforming reactions, modeling predicts the experimental results almost exactly. It is shown that some of the sulfur negative effects can be reduced by increasing the temperature, at which the steam reforming is run.

Fig. 8 — Comparison of modeling and experimental results of methane conversion in the reactor.

Fig. 9 — (a, b) Comparison of methane conversion and temperature distribution at different space velocities within the reactor with and without sulfur, S/C = 3, T = 1120 (K), (a) methane conversion, (b) axial temperature distribution.
Acknowledgments

The authors wish to acknowledge the financial support of the Austrian Climate and Energy Fund since this work was carried out under the Projects “distributed SNG” and “BioH2-4industries”. Moreover, the authors acknowledge the financial support of the Austrian COMET program, where within the Bioenergy2020+ projects “BioH2” and “Mixed Alcohols” a part of the work was carried out.

Nomenclature

\(a_n \) External pellet surface area per unit reactor volume \(m^2/m^3 \)

\(C_i \) Concentration of reactant \(i \) kmol/m⁴

\(C_p \) Specific heat capacity J/(Kg*K)

\(C_s \) Solid concentration kmol/m³

\(d_i \) Inner diameter m

\(d_o \) Outer diameter m

\(d_p \) Equivalent particle diameter m

DEN Denominator in the expressions of reaction rates

\(D_{er} \) Effective radial diffusion coefficient m²/s

\(f \) Friction factor

\(h_f \) Heat transfer coefficient at catalyst surface W/(m²K)

\(k_g \) Mass transfer coefficient from gas to solid interface \(m^3/(m²s) \)

\(K_i \) Adsorption constant of component \(i \)

\(k_{1} \) Rate coefficient of reaction 1 kmol bar \(^{0.5} \) (kg cat s)

\(k_{2} \) Rate coefficient of reaction 2 kmol/(kg cat bar s)

\(k_{3} \) Rate coefficient of reaction 3 kmol bar \(^{0.5} \) (kg cat s)

\(K_1 \) Equilibrium constant of reaction 1

\(K_1 \) Equilibrium constant of reaction 1 bar²

\(K_2 \) Equilibrium constant of reaction 2

\(K_3 \) Equilibrium constant of reaction 3 bar²

\(n \) Molar flow rate kmol/s

\(P \) Pressure bar

\(P_i \) Partial pressure of component \(i \) bar

\(R \) Radius of the reactor m

\(R_g \) Gas constant kJ/(kmol K)

\(R_{p} \) Particle Reynolds number

\(R_i \) Reaction rate of component \(i \) mol/(kg cat s)

\(R_{SO} \) Free sulfur reaction rate mol/(kg cat s)

\(R_{S} \) Reaction rate with sulfur mol/(kg cat s)

\(R_j \) Reaction rate of component \(j \) mol/(kg cat s)

\(R_1 \) Reaction rate of reaction 1 mol/(kg cat s)

\(R_2 \) Reaction rate of reaction 2 mol/(kg cat s)

\(R_3 \) Reaction rate of reaction 1 mol/(kg cat s)

\(R_4 \) Reaction rate of reaction 4 mol/(kg cat s)

\(T \) Temperature K

\(T_w \) Wall temperature K

\(u_r \) Gas velocity in radial direction m/s

\(u_z \) Gas velocity in axial direction m/s

\(V \) Volume m³

Greek letters

\(\Delta H^0 \) Enthalpy of formation kJ/mol

\(\varepsilon \) Porosity of packed bed reactor

\(\eta_i \) Effectiveness factor of reaction \(i \)

\(\lambda_{er} \) Effective thermal conductivity W/(mK)

\(\mu \) Viscosity of the mixture Pa s

\(\rho_f \) Fluid density kg/m³

\(\rho_c \) Catalyst density kg/m³

\(\theta_s \) Sulfur surface coverage

Subscripts

0 Initial condition

c Catalyst

er Effective

f Fluid

g Gas

p Particle

r Radial direction

S Solid

w Reactor wall

z Axial direction

Superscripts

0 Standard condition

s Condition at the catalyst surface

References

[8] Sadooghi P, Rauch R. Experimental and modeling study of catalytic steam reforming of methane mixture with

Fig. 10 – Comparison of modeling and experimental results of methane conversion in the reactor.

