Filter

Sortierung Titel Year

Publikationen


Peer Reviewed Scientific Journals | 2018

A higher-order generalization of the NPK-method.

Birkelbach F, Deutsch M, Flegkas S, Winter F, Werner A. A higher-order generalization of the NPK-method. Thermochimica Acta, 9 January 2018;661:27-33.

External Link

Details

A novel algorithm to identify the full kinetic model of solid state reactions according to the General Kinetic Equation is presented. It is a higher-order generalization of the Non-Parametric Kinetics method (NPK-method) and allows for the simultaneous identification of the conversion, temperature and pressure dependency from any combination of measurements. As a model-free identification method, it does not rely on a-priori assumptions about the kinetic model. The result vectors can be used to identify the kinetic parameters by means of model fitting for each variable independently.

The steps of the algorithm are described and its effectiveness is demonstrated by applying it to simulated datasets. The kinetic parameters could be recovered very accurately from the test data, also in the presence of noise.

Overall the higher order NPK-method is a very promising approach to derive kinetic models from experimental data with a minimum of a-priori assumptions about the reaction.


Scientific Journals | 2018

Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels

Neubauer, R, Weinlaender C, Kienzl N, Bitschnau B, Schroettner H, Hochenauer C. Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels. Journal of Power Sources. 1 May 2018, 385: 45-54.

External Link

Details

On-board desulfurization is essential to operate fuel-cell-based auxiliary power units (APU) with commercial fuels. In this work, both (i) on-board desulfurization and (ii) on-board regeneration performance of Ag-Al2O3 adsorbent is investigated in a comprehensive manner. The herein investigated regeneration strategy uses hot APU off-gas as the regeneration medium and requires no additional reagents, tanks, nor heat exchangers and thus has remarkable advantages in comparison to state-of-the-art regeneration strategies. The results for (i) show high desulfurization performance of Ag-Al2O3 under all relevant operating conditions and specify the influence of individual operation parameters and the combination of them, which have not yet been quantified. The system integrated regeneration strategy (ii) shows excellent regeneration performance recovering 100% of the initial adsorption capacity for all investigated types of fuels and sulfur heterocycles. Even the adsorption capacity of the most challenging dibenzothiophene in terms of regeneration is restored to 100% over 14 cycles of operation. Subsequent material analyses proved the thermal and chemical stability of all relevant adsorption sites under APU off-gas conditions. To the best of our knowledge, this is the first time 100% regeneration after adsorption of dibenzothiophene is reported over 14 cycles of operation for thermal regeneration in oxidizing atmospheres.


Peer Reviewed Scientific Journals | 2018

Catalytic Efficiency of Oxidizing Honeycomb Catalysts Integrated in Firewood Stoves Evaluated by a Novel Measuring Methodology under Real-Life Operating Conditions

Reichert G, Schmidl C, Haslinger W, Stressler H, Sturmlechner R, Schwabl M, Wöhler M, Hochenauer C. Catalytic Efficiency of Oxidizing Honeycomb Catalysts Integrated in Firewood Stoves Evaluated by a Novel Measuring Methodology under Real-Life Operating Conditions. Renewable Energy, March 2018;117:300-313.

External Link

Details

Catalytic systems integrated in firewood stoves represent a potential secondary measure for emission reduction. However, the evaluation of catalytic efficiency is challenging since measurements, especially for PM emissions, upstream an integrated catalyst are not possible. Therefore, a special test facility, called “DemoCat”, was constructed which enabled parallel measurements in catalytically treated and untreated flue gas. The catalytic efficiency for CO, OGC and PM emissions was investigated under real-life operating conditions including ignition and preheating. The results confirmed a significant emission reduction potential (CO: > 95%, OGC: > 60%, PM: ∼30%). The conversion rates of CO and OGC emissions correlated with the space velocity and the coated area of honeycomb carriers which represent key parameters for the integration design. A quick response of the catalytic effect of around 5–12 min after ignition was observed when reaching 250 °C flue gas temperature at the catalyst. Most effective CO and OGC emission conversion was evident during the start-up and burn-out phase of a firewood batch. This reveals an important synergy for primary optimization which focuses particularly on the stretched intermediate phase of a combustion batch. The catalytic effect on PM emissions, especially on chemical composition, needs further investigations.


Peer Reviewed Scientific Journals | 2018

Cyanobacteria Biorefinery — Production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass

Meixner K, Kovalcik A, Sykacek E, Gruber-Brunhumer M, Zeilinger W, Markl K, Haas C, Fritz I, Mundigler N, Stelzer F, Neureiter M, Fuchs W, Drosg B. Cyanobacteria Biorefinery — Production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass. Journal of Biotechnology. 10 January 2018;265(10): 46-53

External Link

Details


Scientific Journals | 2018

Development of a compact technique to measure benzo(a)pyrene emissions from residential wood combustion, and subsequent testing in six modern wood boilers

Klauser F, Schwabl M, Kistler M, Sedlmayer I, Kienzl N, Weissinger A, Schmidl C, Haslinger W, Kasper-Giebl A. Development of a compact technique to measure benzo(a)pyrene emissions from residential wood combustion, and subsequent testing in six modern wood boilers. Biomass and Bioenergy. April 2018, 111: 288-300.

External Link

Details

Polycyclic aromatic hydrocarbons (PAHs) are emitted during incomplete combustion of organic materials and are particularly harmful to human health. As a representative of PAHs, Benzo(a)pyrene (BaP) is restricted by the European Union to an annual average value of 1 ng m−3 in ambient air. This threshold is significantly exceeded during the heating season in various regions. Residential wood combustion furnaces are considered to be a major source for BaP pollution.

In this research, a compact sampling method for BaP measurements was validated. Afterwards, the method was used to assess emissions from modern automatic wood boilers, in order to obtain a detailed knowledge of BaP emissions from residential wood combustion furnaces.

It was demonstrated that, for a wide range of BaP concentrations, sampling from the hot flue gas of residential wood combustors can be carried out effectively over a simple quartz filter, after proper dilution with cold purified air. Highest BaP emissions from the investigated boilers occurred during start, with a mean concentration value of 6.3 μg m-3. All values refer to standard conditions (273.15 °C, 100 kPa) and to an O2 volume fraction of 13% in the dry flue gas. The lowest concentrations occurred during full load operation (mean value 73 ng m-3 at STP). It was found that, amongst all flue gas compounds analysed, elemental carbon is the parameter most closely related to BaP. This work demonstrates, at optimal operating conditions, modern automatic wood boilers have potentially lowest BaP emission concentrations amongst residential wood combustion furnaces.


Scientific Journals | 2018

Evaluation of the Potential for Efficiency Increase by the Application of Model-Based Control Strategies in Large-Scale Solar Thermal Plants

Unterberger V, Lichtenegger K, Innerhofer P, Gerardts B, Gölles M. Evaluation of the Potential for Efficiency Increase by the Application of Model-Based Control Strategies in Large-Scale Solar Thermal Plants. International Journal of Contemporary ENERGY. 2018; 4(1): 549-559.

External Link

Details

This paper presents a systematic evaluation procedure to estimate the potential for performance improvement by applying model-based control strategies in large-scale thermal plants. The evaluation is performed separately for the low-level control which is in charge of the temperatures in the collector fields and for the high-level control which defines the general mode of operation of a plant. In order to evaluate the potential for the low-level control, simulation studies have been carried out, based on the assumption that the individual flows through the collector fields can be controlled separately. This can be achieved by an advanced model-based control which makes use of motor-driven control valves at the inlets of the collector fields. The potential of the high-level control has been evaluated by energy calculations based on measurement data from a typical large-scale solar thermal plant. The evaluation finally identified a potential for efficiency increase in the range of 8% for the low- level control and about 3% for the high-level control.

Scientific Journals | 2018

Experimental parametric study in industrial-scale dual fluid bed gasification of woody biomass: Influences on product gas and tar composition

Kuba M, Hofbauer H. Experimental parametric study in industrial-scale dual fluid bed gasification of woody biomass: Influences on product gas and tar composition. Biomass and Bioenergy. 2018, 115: 35-44.

External Link

Details

Tar measurements at two industrial-scale DFB gasification plants showed clear trends regarding the influence of the above mentioned parameters on the product gas and tar composition. Since data was gathered during tar measurement campaigns over the course of four years the density of information in industrial-scale was increased significantly. As different operation points, e.g. different capacities of the power plant, are included in the consideration, the verisimilitude is comparably high.

It was shown, that reducing the operation temperature leads to an increase of the total tar amounts. However, while the concentration of the tar compounds benzofuran, styrene, and 1H-indene was increased when lowering the temperature, the concentration of naphthalene was decreased. These results were in good correlation with previous work from lab-scale investigations. The temperature did not have a measureable influence on the concentration of the tar compounds anthracene and ace-naphthalene, which was against former experience from lab-scale. The concentration of those larger PAHs anthracene and ace-naphthalene was more dominantly influenced by the bed height in the gasification reactor. Increasing the bed height led to a decrease of the concentration of larger PAHs while it did not have a distinctive influence on benzofuran, styrene, and 1H-indene.

The reactor design was identified as an influencing effect, due to the presence of a moving bed section above the inclined wall, where no fluidization is ensured. Thus, additional fluidization nozzles were installed to reduce the effect of the inclined wall. Finally, two operation points for optimized long-term operation were derived from the results.


Scientific Journals | 2018

Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions

Anca-Couce A, Sommersacher P, Evic N, Mehrabian R, Scharler R. Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions. Fuel. 2018, 222: 529-537.

External Link

Details

There is a need to reduce NOx emissions, which can only be achieved through a detailed understanding of the mechanisms for their formation and reduction. In this work the release of the NOx precursors, NH3 and HCN, for different fuels is experimentally analysed and modelled in typical fixed-bed combustion conditions. It is shown that NH3 and HCN are released during the main devolatilization phase and the NH3/HCN ratio increases for fuels with a higher nitrogen content. A simplified two-steps model for their release is presented. The model can predict with a reasonable accuracy the release for fuels with a low nitrogen content, however deviations are present for fuels with a high nitrogen content, which probably arise due to a reduction of NH3 and HCN taking place already in the bed.


Scientific Journals | 2018

Hydrogen production within a polygeneration concept based on dual fluidized bed biomass steam gasification

Kraussler M, Binder M, Schindler P, Hofbauer H. Hydrogen production within a polygeneration concept based on dual fluidized bed biomass steam gasification. Biomass and Bioenergy. April 2018, 111: 320-329.

External Link

Details

Dual fluidized bed biomass steam gasification generates a high calorific, practically nitrogen-free product gas with a volumetric H2 content of about 40%. Therefore, this could be a promising route for a polygeneration concept aiming at the production of valuable gases (for example H2), electricity, and heat. In this paper, a lab-scale process chain, based on state of the art unit operations, which processed a tar-rich product gas from a commercial dual fluidized bed biomass steam gasification plant, is investigated regarding H2 production within a polygeneration concept. The lab-scale process chain employed a water gas shift step, two gas scrubbing steps, and a pressure swing adsorption step. During the investigations, a volumetric H2 concentration of 99.9% with a specific H2 production of 30 g kg−1 biomass was reached. In addition, a valuable off-gas stream with a lower heating value of 7.9 MJ m−3 was produced. Moreover, a techno-economic assessment shows the economic feasibility of such a polygeneration concept, if certain feed in tariffs for renewable electricity and H2 exist. Consequently, these results show, that the dual fluidized bed biomass steam gasification technology is a promising route for a polygeneration concept, which aims at the production of H2, electricity, and district heat.


Scientific Journals | 2018

Impact of Oxidizing Honeycomb Catalysts Integrated in Firewood Stoves on Emissions under Real-Life Operating Conditions

Reichert G, Schmidl C, Haslinger W, Stressler H, Sturmlechner R, Schwabl M, Wöhler M, Hochenauer C. Impact of Oxidizing Honeycomb Catalysts Integrated in Firewood Stoves on Emissions under Real-Life Operating Conditions. Fuel Processing Technology. 2018; 117: 300-313.

External Link

Details

Catalytic systems integrated in firewood stoves represent a secondary measure for emission reduction. This study evaluates the impact on emissions of two types of honeycomb catalysts integrated in different firewood stoves. The tests were conducted under real-life related testing conditions. The pressure drop induced by the catalyst's carrier geometry affects primary combustion conditions which can influence the emissions. A negative primary effect reduces the catalytic efficiency and has to be considered for developing catalyst integrated solutions. However, a significant net emission reduction was observed. The ceramic catalyst reduced CO emissions by 83%. The metallic catalyst reduced CO emissions by 93% which was significantly better compared to the ceramic catalyst. The net emission reduction of OGC (~30%) and PM (~20%) was similar for both types of catalysts. In most cases, the “Ecodesign” emission limit values, which will enter into force in 2022 for new stoves, were met although the ignition and preheating batches were respected. PM emission composition showed a lower share of elemental (EC) and organic carbon (OC) with integrated catalyst. However, no selectivity towards more reduction of EC or OC was observed. Further investigations should evaluate the long term stability under real-life operation in the field and the effect of the catalyst on polycyclic aromatic hydrocarbon (PAH) emissions.


Peer Reviewed Scientific Journals | 2018

Influence of drag laws on pressure and bed material recirculation rate in a cold flow model of an 8 MW dual fluidized bed system by means of CPFD

Kraft S, Kirnbauer F, Hofbauer H. Influence of drag laws on pressure and bed material recirculation rate in a cold flow model of an 8 MW dual fluidized bed system by means of CPFD. Particuology, February 2018;36:70-81.

External Link

Details

A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial computational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed connected to a fast fluidized bed with the bed material circulating between them. As the hydrodynamics in hot DFB plants are complex because of high temperatures and many chemical reaction processes, cold flow models are used. Performing numerical simulations of cold flows enables a focus on the hydrodynamics as the chemistry and heat and mass transfer processes can be put aside. The drag law has a major influence on the hydrodynamics, and therefore its influence on pressure, particle distribution, and bed material recirculation rate is calculated using Barracuda and its results are compared with experimental results. The drag laws used were energy-minimization multiscale (EMMS), Ganser, Turton–Levenspiel, and a combination of Wen–Yu/Ergun. Eleven operating points were chosen for that study and each was calculated with the aforementioned drag laws. The EMMS drag law best predicted the pressure and distribution of the bed material in the different parts of the DFB system. For predicting the bed material recirculation rate, the Ganser drag law showed the best results. However, the drag laws often were not able to predict the experimentally found trends of the bed material recirculation rate. Indeed, the drag law significantly influences the hydrodynamic outcomes in a DFB system and must be chosen carefully to obtain meaningful simulation results. More research may enable recommendations as to which drag law is useful in simulations of a DFB system with CPFD.


Scientific Journals | 2018

Power to fuels: Dynamic modeling of a Slurry Bubble Column Reactor in lab-scale for Fischer Tropsch synthesis under variable load of synthesis gas

Seyednejadian S, Rauch R, Bensaid S, Hofbauer H, Weber G, Saracco G. Power to fuels: Dynamic modeling of a Slurry Bubble Column Reactor in lab-scale for Fischer Tropsch synthesis under variable load of synthesis gas. Apllied Sciences. 2018, 8(4): 514.

External Link

Details

This research developed a comprehensive computer model for a lab-scale Slurry Bubble Column Reactor (SBCR) (0.1 m Dt and 2.5 m height) for Fischer–Tropsch (FT) synthesis under flexible operation of synthesis gas load flow rates. The variable loads of synthesis gas are set at 3.5, 5, 7.5 m3/h based on laboratory adjustments at three different operating temperatures (483, 493 and 503 K). A set of Partial Differential Equations (PDEs) in the form of mass transfer and chemical reaction are successfully coupled to predict the behavior of all the FT components in two phases (gas and liquid) over the reactor bed. In the gas phase, a single-bubble-class-diameter (SBCD) is adopted and the reduction of superficial gas velocity through the reactor length is incorporated into the model by the overall mass balance. Anderson Schulz Flory distribution is employed for reaction kinetics. The modeling results are in good agreement with experimental data. The results of dynamic modeling show that the steady state condition is attained within 10 min from start-up. Furthermore, they show that step-wise syngas flow rate does not have a detrimental influence on FT product selectivity and the dynamic modeling of the slurry reactor responds quite well to the load change conditions.


Peer Reviewed Scientific Journals | 2017

Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis.

Anca-Couce A, Sommersacher P, Scharler R. Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis. Journal of Analytical and Applied Pyrolysis. Available online 17 July 2017

External Link

Details

Detailed reaction schemes and experimental data for the online release of pyrolysis volatiles are required to gain a more fundamental understanding of biomass pyrolysis, which would in turn allow the process to be controlled in a more precise way and the development of more targeted applications. A detailed online characterisation of pyrolysis products has been conducted in single particle experiments with spruce pellets at different temperatures, obtaining a good closure of the elemental mass balances. The yields and online release of CO, CO2, H2O, CH4, other light hydrocarbons and total organic condensable species, as well as char yield and composition, can be predicted with a reasonable accuracy with the application of a single particle model, coupled with a detailed pyrolysis scheme, and a simple one-step scheme for tar cracking. In order to achieve it, improvements have been conducted in the pyrolysis scheme, mainly concerning the release of light hydrocarbons and char yield and composition. Deviations are still present in the different groups in which organic condensable species can be classified.


Technical Reports | 2017

2016 Survey of Non-Starch Alcohol and Renewable Hydocarbon Biofuels Producers

Warner E, Bacovsky D, Schwab A. 2016 Survey of Non-Starch Alcohol and Renewable Hydocarbon Biofuels Producers. 2016 Survey of Non-Starch Alcohol and Renewable Hydocarbon Biofuels Producers. February 2017.

Details


Peer Reviewed Scientific Journals | 2017

A hybrid of winddiesel technology with biomass-based Fischer-Tropsch synthesis

Nikparsa P, Rauch R, Mirzaei AA. A hybrid of winddiesel technology with biomass-based Fischer-Tropsch synthesis. Monatshefte für Chemie. 10 July 2017;1-10.

External Link

Details

The syngas mixture produced from biomass (bio-syngas) is characterized by a H2/CO molar ratio of 1.5 in this work, which is different from that of traditional syngas ratio of 2. Therefore a hybrid of winddiesel technology with bio-syngas conversion by Fischer–Tropsch synthesis (WD-FT) on a cobalt based catalyst was investigated, for the first time, using a slurry reactor. The result from feeding this technology is compared with the direct converting biomass derived synthetic gas to fuels via Fischer–Tropsch synthesis (BS-FT). Experiments were performed at different syngas composition (variation of H2/CO ratio), keeping the other parameters (temperature 230 °C; gas flow 5 Nm³/h, pressure 20 bar) constant. Comparison of the WD-FT with the BS-FT synthesis results displayed mass fraction of light hydrocarbons and higher catalytic stability and activity after 500 h. The olefin structures for the different product distributions, obtained from different reactions, are determined by ¹H NMR spectroscopy. Negligible amounts of iso-α-olefins were detected in the product of the WD-FT reaction. In the case of the alpha value, a slight change was observed between 0.93 and 0.92 for the BS-FT and WD-FT reaction.
 


Conference Papers | 2017

A novel approach for the implementation of TORrefaction in Residential and COMmunal heating Boilers (TORRECOMB)

Kourkoumpa DS, Kienzl N, Isemin R, Strasser C, Nikolopoulus N, Margaritis N, Panagiotis G. A novel approach for the implementation of TORrefaction in Residential and COMmunal heating Boilers (TORRECOMB). 5th Central European Biomass Conference (Poster). January 2017, Graz, Austria.

Details


Conference Papers | 2017

A Theoretical and Experimental Study of the Formation of Aromatic Hydrocarbons (BTX/PAH) as Soot Precursors from Biomass Pyrolysis Products

Mehrabian R, Shiehnejadhesar A, Bahramian H, Anca-Couce A, Sommersacher P, Hochenauer C, Scharler R. A Theoretical and Experimental Study of the Formation of Aromatic Hydrocarbons (BTX/PAH) as Soot Precursors from Biomass Pyrolysis Products. 25th European Biomass Conference & Exhibition (oral presentation). May 2017, Stockholm, Sweden.

External Link

Details

In this work a novel reaction mechanism for gas phase reactions has been developed to predict the formation of aromatic compounds from the pyrolysis products of woody biomass particles. The aromatic compounds are important for being main soot precursors as well as their toxic properties. The developed gas phase mechanism is validated with experimental data from literature as well as experimental data performed with a single particle reactor for three different pyrolysis temperatures, namely 550, 800 and 1000°C. A good agreement is achieved between model results and experimental data for the total yield of each main family of aromatic hydrocarbons, i.e. phenolics, BTXs and PAHs.


Peer Reviewed Scientific Journals | 2017

Acid base interaction and its influence on the adsorption kinetics and selectivity order of aromatic sulfur heterocycles adsorbing on Ag-Al2O3

Neubauer R, Husmann M, Weinlaender C, Kienzl N, Leitner E, Hochenauer C. Acid base interaction and its influence on the adsorption kinetics and selectivity order of aromatic sulfur heterocycles adsorbing on Ag-Al2O3. Chemical Engineering Journal. 1 February 2017;309: 840-849.

External Link

Details

Adsorptive desulfurization is a promising technology to provide sulfur free fuels for fuel cell based power units. In this work the adsorption kinetics of three different aromatic sulfur heterocycles was studied for Ag-Al2O3. The influence of individual as well as competitive adsorption on the selectivity order was investigated by equilibrium and breakthrough experiments. In these experiments a jet-A1 fuel enriched with benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was used. The adsorption of aromatic sulfur heterocycles on Ag-Al2O3 proceeds via three different adsorption mechanisms. Within these mechanisms the π-interaction (π-Ag) and the direct sulfur-silver interaction (S-Ag) are significantly stronger in comparison to the acid base interaction (S-H). The results showed that the π-Ag and S-Ag interactions are the major adsorption mechanisms in the first stage, where film-diffusion limits the adsorption rate. In the second stage, the S-H interaction plays only an important role for BT, where intraparticle diffusion is the rate controlling step. The overall selectivity order was found to be BT > DBT > 4,6-DMDBT in the case of competitive adsorption for both equilibrium and breakthrough performance. The S-H contribution was related to incorporation of silver into blank γ-alumina, which significantly increased the overall acidity of the adsorbent.


Peer Reviewed Scientific Journals | 2017

An experimental approach aiming the production of a gas mixture composed of hydrogen and methane from biomass as natural gas substitute in industrial applications

Kraussler M, Schindler P, Hofbauer H. An experimental approach aiming the production of a gas mixture composed of hydrogen and methane from biomass as natural gas substitute in industrial applications. Bioresource Technology. August 2017;237: 39-46.

External Link

Details


Conference Papers | 2017

An investigation on the behaviour of nitrogen based impurities over a water gas shift stage and a biodiesel scrubber

Loipersböck J, Rauch R, Hofbauer H. An investigation on the behaviour of nitrogen based impurities over a water gas shift stage and a biodiesel scrubber. 5th Central European Biomass Conference (Poster). January 2017, Graz, Austria.

Details


Scientific Journals | 2017

Apparent kinetics of the water-gas-shift reaction in biomass gasification using ash-layered olivine as catalyst.

Krycaa J, Priščák J, Łojewskac J, Kuba M, Hofbauer H. Apparent kinetics of the water-gas-shift reaction in biomass gasification using ash-layered olivine as catalyst. Chemical Engineering Journal. 2018, 346: 113-119.

External Link

Details

Substitution of fossil fuels for production of electricity, heat, fuels for transportation and chemicals can be realized using biomass steam gasification in a dual fluidized bed (DFB).

Interaction between biomass ash and bed material in a fluidized bed leads to transformation of the bed particle due to enrichment of components from the biomass ash resulting in the development of ash layers on the bed particle surface. These ash-rich particle layers enhance the catalytic activity of the bed material regarding the water-gas-shift reaction and the reduction of tars.

The water-gas-shift reaction at conditions typical for dual fluidized bed biomass gasification at a temperature of 870 °C was investigated. Diffusion and heat transfer limitations were minimized using a lab-scale experimental set-up consisting of a gas mixing section and a quartz glass reactor in which the catalyst is investigated.

 

 

 


Conference Papers | 2017

Ash and bed material research in dual fluidized bed gasification of biomass in lab- and industrial-scale

Kuba M, Hofbauer H. Ash and bed material research in dual fluidized bed gasification of biomass in lab- and industrial-scale. 25th European Biomass Conference & Exhibition (oral presentation). June 2017, Stockholm, Sweden.

Details


Peer Reviewed Scientific Journals | 2017

Behavior of GCMS tar components in a water gas shift unit operated with tar-rich product gas from an industrial scale dual fluidized bed biomass steam gasification plant

Kraussler M, Binder M, Hofbauer H. Behavior of GCMS tar components in a water gas shift unit operated with tar-rich product gas from an industrial scale dual fluidized bed biomass steam gasification plant. Biomass Conversion and Biorefinery. 1 March 2017;7(1): 69-79.

External Link

Details


Other Presentations | 2017

Bidirektionale Wärmenetze: Regelung, Energiemanagement, Potenzial

Lichtenegger K, Leitner A, Moser A, Muschick D, Höftberger E, Gölles M. Bidirektionale Wärmenetze: Regelung, Energiemanagement, Potenzial. Workshop auf der Central European Biomass Conference 2017.

External Link

Details


Peer Reviewed Scientific Journals | 2017

Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal

Onenc S, Retschitzegger S, Evic N, Kienzl N. Characteristics and synergistic effects of co-combustion of carbonaceous waste with coal. ATHENS 2017 5th International Conference on Sustainable Solid Waste Management (Poster). June 2017, Athens, Greece.

External Link

Details

This study presents combustion behavior and emission results obtained for different fuels: poultry litter (PL) and its char (PLC), scrap tires (ST) and its char (STC) and blends of char/lignite (PLC/LIG and STC/LIG). The combustion parameters and emissions were investigated via a non-isothermal thermogravimetric method and experiments in a lab-scale reactor. Fuel indexes were used for the prediction of high temperature corrosion risks and slagging potentials of the fuels used. The addition of chars to lignite caused a lowering of the combustion reactivity (anti-synergistic effect). There was a linear correlation between the NOx emissions and the N content of the fuel. The form of S and the concentrations of alkali metals in the fuel had a strong effect on the extent of SO2 emissions. The use of PL and PLC in blends reduced SO2 emissions and sulphur compounds in the fly ash. The 2S/Cl ratio in the fuel showed that only PLC and STC/PLC would show a risk of corrosion during combustion. The ratio of basic to acidic oxides in fuel indicated that ST, STC and STC/LIG have low slagging potential. The molar (Si + P + K)/(Ca + Mg) ratio, which was used for PL, PLC and PLC containing blends, showed that the ash melting temperatures of these fuels would be higher than 1000 °C.


Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@bioenergy2020.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter_innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite