Filter

Sortierung Titel Year

Publikationen


Conference contributions | 2009

Climate Impact of a Private Company`s Choice, Poster

Ragossnig A, Wartha C, Pomberger R. Climate Impact of a Private Company`s Choice, Poster, Waste & Climate 2009, 7th-18th of September, Copenhagen, Denmark.

Details


Conference contributions | 2009

Comparative Characterisation of High Temperature Aerosols in Waste Wood Fired Fixed-Bed and Fluidised-Bed Combustion Systems

Obernberger I, Fluch J, Brunner T. Comparative Characterisation of High Temperature Aerosols in Waste Wood Fired Fixed-Bed and Fluidised-Bed Combustion Systems, 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany. p 1189-1199.

Details


Conference contributions | 2009

Destination-process-specific Optimization of Waste Processing Using Innovative Treatment Technology

Ragossnig A. Destination-process-specific Optimization of Waste Processing Using Innovative Treatment Technology, ISWA Annual Congress 2009, 12th-15th of October, Lissabon, Portugal.

Details

Driven by increasing energy and raw material prices as well as changes in the legal framework the state of the art in the European Union has changed from waste management to resource management over the past 15 years. This has led to a higher appreciation of the resource “waste” as a secondary raw material as well as an energy resource. In this context the importance of effective waste processing in order to allow quality specific routing of waste streams has become very important. On the one hand material recycling requires a high purity of the waste material to be recycled. The prices to be achieved for the recycling material are highly dependend on the purity of the recyclables. The economic viability of treatment concepts very much depends on the rate of recovery of the recycling product. On the other hand the portion of waste that is thermally treated has increased and still is on the rise. Furthermore extensive efforts on the usage of waste fractions as Solid Recovered Fuels (SRF) in alternative thermal treatment processes with higher energy recovery are being undertaken. Alternative thermal treatment
processes have special demands on the quality of the waste streams to be treated due to process and product quality reasons as well as ecological concerns. Sophisticated waste pre-treatment concepts ensure compliance with required quality standards of wastes to be recycled or utilized energetically. In spite of that waste pre-treatment - in sometimes complex processes - the problem of disposal of the remaining residual waste fraction has to be solved, as the disposal of the residuals in compliance with the regulatory framework causes high expenses for the waste treatment plant operator. The first part of this manuscript focusses on the legal framework prompting the implementation of new waste processing technologies allowing an effective routing of waste fractions by material specific splitting of the over all waste stream. Most relevant in that respect are the EU Waste Framework Directive as well as the EU Landfill Directive and the EU Packaging Directive. Climate
policy and respective regulations are also influencing waste management practice. Additionally economic aspects for destination-process specific routing of waste streams are being addressed. In the second part of this manuscript the set-up of test runs as well as the results obtained and experiences gained based on the test runs are being reported. One test set-up aims at removing highcaloric waste components from waste streams of Mechanical-Biological Treatment (MBT) facilities in order to maximize the quantity of waste that can be landfilled. A second test set up deals with the processing of commercial plastic waste containing different types of polymers in order to gain pure recyclables. As the economic value of waste plastic depends on the purity in terms of individual polymers it is very important to separate individual polymers from mixed plastic waste. Near-Infrared
(NIR) sensor based sorting allows a separation of different types of plastics. The results of test runs are explained in terms of quality and yield of product gained as well as economical aspects. Although the prices for recyclables have fallen during the last months as a result of the financial and economical crisis leading to a decrease in the demand of recyclables it is assumed that gaining high quality waste fractions from mixed wastes for material recyling as well as energy recovery will become more important in the long run.


Conference contributions | 2009

Efficient utilisation of industrial residues and waste with high biomass content using gasification technology

Wilk V, Hofbauer H. Efficient utilisation of industrial residues and waste with high biomass content using gasification technology, 18th European Biomass Conference and Exhibiton 2010, 3th-7th of May 2010, Lyon, France. p 544-547.

Details


Conference contributions | 2009

Einsatz der sensorgestützten Sortiertechnik zur Senkung des Brennwerts der Deponiefraktion in MBA Anlagen

Faist V, Ragossnig A. Einsatz der sensorgestützten Sortiertechnik zur Senkung des Brennwerts der Deponiefraktion in MBA Anlagen, Waste-to-Ressources 2009, 5th-8th of May 2009, Hannover, Deutschland.

Details


Other Presentations | 2009

First test runs and tar analyses of a low temperature pyrolysis

Wolfesberger, U. First test runs and tar analyses of a low temperature pyrolysis, Master Thesis, Vienna University of Technology, Vienna, Austria, 2009.

Details

The global warming, the increasing CO2 emission, the combustion and dependency on fossil fuels, as well as the high-energy prices have resulted in an increasing demand in renewable energy sources. Biomass, as a renewable energy source, has the potential to contribute to the future energy mix in many countries. In this thesis the so-called low temperature or slow pyrolysis is chosen to convert biomass into energy rich products. Pyrolysis is a process to convert biomass directly into solid, liquid and gaseous products by thermal decomposition in absence of oxygen. The goal of the pilot plant Dürnrohr is to generate a combustible gas to substitute fossil fuels in the thermal power plant Dürnrohr. The complete process consists of individual steps. First of all the biomass is pyrolysed and pyrolysis gas and pyrolysis char are produced. The obtained pyrolysis gas is combusted in a fluidized bed combustion chamber implemented as afterburner. The following step is fluidized bed combustion of
the intermediate-stored pyrolysis char. Due to the use of different biomasses and adjustment of the individual steps, the process should be optimized for the application for the power plant Dürnrohr. One major point of the production of the pyrolysis gas is the amount of tar. The tar amount was analyzed during pyrolysis operation to find out how much tar is produced at which process settings with a main focus on the temperature. The gravimetric
analysis included gravimetric tar, dust, entrained char, water content and ph-value, as well as the GC/MS tars of the pyrolysis gas. All these data was sampled, analyzed and evaluated as well as discussed.


Contributions to trade journals | 2009

Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination

Fraissler G, Jöller M, Brunner T, Obernberger I. Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination. Chemical Engineering and Processing: Process Intensification. 2009;48(1):380-8.

External Link

Details


Conference contributions | 2009

Low temperature pyrolysis is used to substitute fossil fuels in a thermal power plant

Halwachs M, Kampichler G, Hofbauer H. Low temperature pyrolysis is used to substitute fossil fuels in a thermal power plant, 17th European Biomass Conference & Exhibition, CCH-Congress Center Hamburg 2009, 29th of June-3rd of July 2009, Hamburg, Germany. p 1062-1064.

Details


Conference contributions | 2009

Low temperature pyrolysis of agricultural residues - first results of a pilot plant

Halwachs M, Kampichler G, Kern St, Hofbauer H. Low temperature pyrolysis of agricultural residues - first results of a pilot plant, ICPS 2009, 1st-3rd of September 2009, Vienna, Austria.

Details


Conference contributions | 2009

Micro-CHP – Experiences with thermoelectric generators integrated in a wood pellet combustion unit

Friedl G, Moser W, McCarry A, Berndt K, Schöpke R. Micro-CHP – Experiences with thermoelectric generators integrated in a wood pellet combustion unit, 28th International_and 7th European_Conference_on_Thermoelectrics 2009, 26th-30th of July, 2009, Freiburg, Germany

Details

Wood pellet combustion units are a comfortable, full automatic and low emission solution for the provision of space heating in small scale applications. The requirement of an auxiliary energy source for the heat supply and distribution however results in a dependence on the electrical grid. The goal of this work is thereby to eliminate this dependence and to meet the auxiliary energy demand through the independent production of electrical energy. The thermoelectric power production method was chosen from a number of technology variations so as to guarantee the silent and maintenance free production of direct current that can be implemented in cellars and space heaters. The first development step was the implementation of a Prototype with a fuel heat input of 10 kW and a nominal electrical power of 200 W. The central point of the implementation was the integration of a thermo-generator in a pellet combustion unit and the subsequent evaluation of the system concept. The integrated system implemented in the prototype confirms the feasibility of the combination of these technologies. The electrical efficiency of the thermo-generator was found to be in accordance with the target value of 4%, corresponding to a produced nominal electric power of 200 W.


Conference contributions | 2009

Neue Rohstoffsortimente für die Holzpelletsproduktion – Einfluss eines erhöhten Rindenanteils auf die Verbrennungseigenschaften

Haslinger W, Friedl G, Wopienka E, Emhofer W. Neue Rohstoffsortimente für die Holzpelletsproduktion – Einfluss eines erhöhten Rindenanteils auf die Verbrennungseigenschaften, 9. Industrieforum Pellets 2009, 7th-9th of October 2009, Stuttgart, Germany.

Details

Holzpellets werden in zunehmendem Maße aus Hackschnitzel hergestellt. Es ist davon auszugehen, dass diese Veränderung der Rohstoffbasis zu erhöhten Aschegehalten im Brennstoff führt und zu Schwierigkeiten bei der Nutzung führen kann. Die vorliegende Arbeit kommt zum Schluss, dass moderate Anteile (< 5%) sauberer Rinde zu keinen wesentlichen Verschlackungen führen. Bei Verunreinigung oder / und sehr hohen Rindenanteilen ist mit
Verschlackungsproblemen jedenfalls zu rechnen.


Conference contributions | 2009

Nutzungsgradsteigerung bei Pelletsfeuerungen

Friedl G. Nutzungsgradsteigerung bei Pelletsfeuerungen, 9. Industrieforum Pellets 2009, 7th-9th of October 2009, Stuttgart, Germany.

Details


Conference contributions | 2009

Possibilities of Ash Utilisation from Biomass Combustion Plants

Obernberger I, Supancic K. Possibilities of Ash Utilisation from Biomass Combustion Plants, 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany. p 2373-2384.

Details


Conference contributions | 2009

Primary measures for low-emission residential wood combustion – comparison of old with optimised modern systems

Brunner T, Obernberger I, Scharler R. Primary measures for low-emission residential wood combustion – comparison of old with optimised modern systems, 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany.

Details


Conference contributions | 2009

Quality Check for European Wood Pellets

Wopienka E, Griesmayr S, Friedl G, Haslinger W. Quality Check for European Wood Pellets, 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany. p 1821-1823.

Details

In the presented work the fuel quality and basic data about production processes of wood pellets from
all over Europe are investigated. For this purpose pellets producers were interviewed and fuel samples were analysed. Information from 91 companies was evaluated, covering about 50% of the European pellets production capacity, and pellets samples of 51 companies from 18 different countries were examined. It was found, that the raw material for pellets production is mainly taken from local resources. 75% of the plants process soft wood, whereas the use of hard wood is more common in Eastern Europe, Italy, Spain and France. Regarding the fuel properties of the pellets, differences were mainly found with regard to ash content and mechanical durability. In spite of these strong variations, almost all samples fulfilled the requirements according to the respective quality standard declared, and a clear correlation of valid standards and available pellets qualities was observed.


Conference contributions | 2009

Reached Developments of Biomass Combustion Technologies and Future Outlook (plenary lecture)

Obernberger I. Reached Developments of Biomass Combustion Technologies and Future Outlook (plenary lecture), 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany. p 20-37.

Details


Contributions at other events | 2009

Realisierung einer mit Biomasse befeuerten Mikro-Kraft-Wärme-Kopplung mit thermoelektrischem Generator

Moser, W. Realisierung einer mit Biomasse befeuerten Mikro-Kraft-Wärme-Kopplung mit thermoelektrischem Generator, Doctoral Thesis, Technische Universität Wien, Vienna, Austria, 2009.

Details


Conference contributions | 2009

Reality Check for Agricultural Biofuels

Wopienka E, Friedl G, Haslinger W. Reality Check for Agricultural Biofuels, World Sustainable Energy Days 2009, 25th-27th of February 2009, Wels, Austria.

Details


Contributions to trade journals | 2009

Results and Experiences of Long Term Tests of the Fischer Tropsch Synthesis at the Biomass CHP Güssing

Rauch R. Results and Experiences of Long Term Tests of the Fischer Tropsch Synthesis at the Biomass CHP Güssing, Kraftstoffe der Zukunft 2009, 7. Internationaler Fachkongress für Biokraftstoffe des BBE und der UFOP 2009, 30th of November–1st of December 2009, Berlin, Deutschland.

Details


Conference contributions | 2009

State-of-the-art and comparison of incineration and gasification of residues and waste

Wilk V, Hofbauer H. State-of-the-art and comparison of incineration and gasification of residues and waste. Junior Scientist Conference 2010, 7th-9th May 2010, Vienna, Austria.

Details

Thermal treatment of residues and waste is an important issue with increasing demand. In this work two pathways of thermal waste treatment, incineration and gasification, are compared. For this purpose literature on both technologies has been reviewed and the state-of-art technology for waste incineration and gasification is presented. The comparison highlights the strengths and weaknesses of both technologies and identifies future potentials.


Contributions at other events | 2009

State-of-the-art and comparison of incineration and gasification of residues and waste

Wilk, V. State-of-the-art and comparison of incineration and gasification of residues and waste, Doctoral Thesis, Vienna University of Technology, Vienna, Austria, 2009.

Details

More and more waste is generated every year, which has to be disposed. There is a legal obligation to treat waste before it can be landfilled in the European Union. Thus, thermal waste treatment is a very important issue.
In this work two pathways of thermal waste treatment, incineration and gasification, are compared. For this purpose, literature on both technologies has been reviewed and the stateof‐art technology for waste incineration and gasification is presented. The comparison highlights the strengths and weaknesses of both technologies and identifies future potentials. In Europe waste incineration is the state‐of‐the‐art technology ensuring destruction of the pollutants and allowing recovery of the energy content of the waste. A waste incineration plant consists of a furnace, where the waste is incinerated and the chemically bonded energy of the waste is discharged as heat. The hot flue gases pass the heat to the water in the heating surfaces of the steam generator. The energy of the waste can be used for the generation of hot water, steam of electrical power. Then the flue gas has to be cleaned in the air pollution control system. Dust is precipitated, HCl and HF is removed in an acid scrubber and SO2 in an alkaline scrubber. A catalytic reaction destroys dioxins and furans and reduces the emissions of NOx. Due to waste incineration the volume of the residues, which have to be landfilled, is
reduced by 90%. The second pathway of thermal waste treatment is waste gasification, where solid carbonaceous materials are converted into combustible gases by reaction with gasification agents. Due to gas production, not only the energy content of the waste can be recovered but the product range is extended. The producer gas can be converted into heat and power in a conventional steam boiler but also combusted in gas engines or turbines with higher efficiencies. In a combined cycle plant the hot exhaust gas of the turbine can be used in a heat recovery steam generator to increase the efficiency even more. After further cleaning the producer gas is also a suitable feedstock for synthesis of liquid fuels, synthetic natural gas and other chemicals.
Waste gasification processes have been developed in the past, but the plants have been shut down because of economic reasons and/or technical problems. However, important research has been done in the field of biomass gasification and thus gasification technology has been improved markedly. The fluidised bed gasifier in Güssing is one of the most successful examples; this technology is about to be commercialised. Considering these developments, there is definitely interesting potential for waste gasification now and the design of a new waste gasification process based on the findings in biomass gasification will be the scope of future research work.


Conference contributions | 2009

Status of BioSNG Production and FT Fuels from Biomass Steam Gasification

Rauch R. Status of BioSNG Production and FT Fuels from Biomass Steam Gasification, 4th BTLtec Biomass to Liquids 2009, 24th-25th of September, 2009 Graz, Austria.

Details


Conference contributions | 2009

Status of Development of Synthetic Biofuels from Biomass in Austria

Rauch R. Status of Development of Synthetic Biofuels from Biomass in Austria, Alternative Propulsion Systems and Energy Carriers 2009, 16th of October 2009, Vienna, Austria.

Details


Conference contributions | 2009

Tar Content and Composition in Producer Gas of Fluidized Bed Gasification and Low Temperature Pyrolysis of Straw and Wood – Influence of Temperature

Aigner I, Wolfesberger U, Hofbauer H. Tar Content and Composition in Producer Gas of Fluidized Bed Gasification and Low Temperature Pyrolysis of Straw and Wood – Influence of Temperature, ICPS 2009, 1st-3rd of September 2009, Vienna, Austria.

Details

The global warming, the increasing CO2 emission, the combustion of and dependency on fossil
fuels, as well as the high-energy price have resulted in an increasing demand in renewable energy
sources. Biomass, as a renewable energy source, has the potential to contribute to the future energy
mix in various ways. In thermo-chemical biomass conversion processes, especially gasification and pyrolysis, the tar content and its composition is a major subject. Due to the various processes examined at VUT, this
work picks up the opportunity to compare the different tar amounts and compositions at different
temperatures and process parameters. The tar content and composition in the producer gas of steam
gasification of straw and wood as well as the tar yields of low temperature pyrolysis of straw are
displayed in the following work. Gasification experiments were carried out in a 100 kW dual fluidized bed steam gasifier at a temperature range of 700° C to 870° C. Pyrolysis experiments were conducted in a rotary kiln
reactor at temperatures between 600° C and 630° C. For better understanding of tar formation during thermo-chemical conversion of biomass the tar content and composition in the producer gas was analyzed with a gas chromatograph coupled with a mass spectrometer. Main observation was that at higher temperatures the tar composition is shifted to higher molecular tars as poly aromatic hydrocarbons (PAH). Key tar components at lower temperatures (pyrolysis) are phenols. These results give the opportunity to analyse tar formation in different thermochemical conversion steps, therefore, for the future a better understanding of tar formation in large scale facility’s should be gained. This means lower tar content in the producer gas for gasification processes and an achievement of required pyrolysis oil yields for pyrolysis.


Contributions to trade journals | 2009

Tar content and composition in producer gas of fluidized bed gasification of wood - influence of temperature and pressure

Wolfesberger U, Aigner I, Hofbauer H. Tar content and composition in producer gas of fluidized bed gasification of wood-influence of temperature and pressure. Environmental Progress and Sustainable Energy. 2009;28(3):372-9.

External Link

Details


Kontaktieren Sie uns

Sie erreichen unser Office unter der Adresse office@bioenergy2020.eu

Nutzen Sie auch die Möglichkeit, direkt von dieser Webseite eine Nachricht an unsere Mitarbeiter_innen zu schicken. Schnell und unkompliziert.

Zur Team-Seite